Further Site Investigation Report

Site:

Former Memorial Park 1301 Highland Street Hammond, IN 46320

Prepared For:

Hammond Redevelopment Commission City of Hammond 5925 Calumet Avenue, Suite 315 Hammond, IN 46320

Prepared By:

Amereco, Inc. Project No. 23.2128.2

January 9, 2024

January 9, 2024

Ms. Anne Taylor Hammond Redevelopment Commission City of Hammond 5925 Calumet Avenue, Suite 315 Hammond, IN 46320

Re: Further Site Investigation Report Former Memorial Park 1301 Highland Street, Hammond, IN 46320 Project #23.2128.2

Dear Ms. Taylor:

Per your authorization, we have performed a Further Site Investigation (FSI) for the property known as the Former Memorial Park, located at 1301 Highland Street, Hammond, Lake County, Indiana 46320 ("Subject Site"). The FSI was conducted in general accordance with the Indiana Department of Environmental Management (IDEM) *Risk-based Closure Guide* (R2), effective July 8, 2022, applicable regulations, industry-accepted practices, and Amereco's professional judgment based on the proposed residential development.

The primary objective of the FSI was to further assess the contaminants of concerns (COCs) that were identified in on-Site surface soils by the previous Phase II Environmental Site Assessment (ESA), dated December 1, 2023, prepared by Amereco (project number 23.2128), to evaluate current and future potential direct contact exposure scenarios. As part of this FSI, 41 on-Site surface soil samples were collected between December 13 and 14, 2023, and submitted for laboratory analysis of arsenic, lead, and/or mercury depending on the previously identified concern.

Based on the findings of the FSI, it is concluded that the representative concentrations from two lots proposed for residential use (Lots 22 and 38) identified lead and arsenic, respectively, in exceedance of currently applicable IDEM R2 Residential Soil Published Levels (RSPLs). All other representative concentrations were below applicable IDEM RSPLs. Therefore, while individual samples may exceed IDEM RSPLs, it is not indicative of a risk to human health and the environment. Remediation can be conducted to further reduce risk. A discussion regarding the conclusions and recommendations obtained from this investigation can be found in Section 4.

We appreciate the opportunity to provide you with this service. If you have any questions or comments regarding this report, or if we can be of any additional service, please contact the undersigned.

Respectfully submitted,

rista Rose

Krista Rose Project Manager

achary Heine, CHMM

VP of Operations

Table of Contents

Acronyms	s	1
Executive	e Summary	2
1. Back	kground Information	3
1.1.	Regional Location	3
1.2.	Site Location	3
1.3.	Overview of Previous Site Environmental Investigations & Spill History	3
2. Furth	her Site Investigation	6
2.1.	Objectives of Further Site Investigation	6
2.2.	Chemical Testing Plan	6
2.3.	Conceptual Site Model & Sampling Plan	6
2.4.	Surface Soil Sampling	8
2.5.	Site Geology	8
2.6.	Site Hydrogeology	8
3. Anal	lytical Results	9
3.1.	Soil Analytical Results	9
4. Discu	cussion of Representative Concentrations & Conclusions	11
4.1.	Representative Concentrations	11
4.2.	Conclusions	11
4.3.	Recommendations	12
5. Refe	erences	13

Appendices

Appendix A	Figures
Appendix B	Tabulated Sample Results and ProUCL Output Data Sheets
Appendix C	Surface Soil Sample Log Form
Appendix D	Laboratory Analytical Reports

Acronyms

bgsbelow ground surfaceCOCContaminants of ConcernCSPLCommercial Soil Published Level (IDEM R2)DNRDepartment of Natural ResourcesERCEnvironmental Restrictive CovenantESAEnvironmental Site AssessmentFSIFurther Site InvestigationGWPLGroundwater Published Level (IDEM R2)HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCGRemediation Program Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic CompoundsVSDIEnvertion Scil Dubibad Level (IDEM R2)	ASTM	American Society for Testing and Materials International
CSPLCommercial Soil Published Level (IDEM R2)DNRDepartment of Natural ResourcesERCEnvironmental Restrictive CovenantESAEnvironmental Site AssessmentFSIFurther Site InvestigationGWPLGroundwater Published Level (IDEM R2)HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	bgs	below ground surface
DNRDepartment of Natural ResourcesERCEnvironmental Restrictive CovenantESAEnvironmental Site AssessmentFSIFurther Site InvestigationGWPLGroundwater Published Level (IDEM R2)HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	COC	Contaminants of Concern
ERCEnvironmental Restrictive CovenantESAEnvironmental Site AssessmentFSIFurther Site InvestigationGWPLGroundwater Published Level (IDEM R2)HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	CSPL	Commercial Soil Published Level (IDEM R2)
ESAEnvironmental Site AssessmentFSIFurther Site InvestigationGWPLGroundwater Published Level (IDEM R2)HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	DNR	Department of Natural Resources
FSIFurther Site InvestigationGWPLGroundwater Published Level (IDEM R2)HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCCAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	ERC	Environmental Restrictive Covenant
GWPLGroundwater Published Level (IDEM R2)HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	ESA	Environmental Site Assessment
HASPHealth and Safety PlanIDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	FSI	Further Site Investigation
IDEMIndiana Department of Environmental ManagementPAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	GWPL	Groundwater Published Level (IDEM R2)
PAHsPolynuclear Aromatic HydrocarbonsPCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	HASP	Health and Safety Plan
PCBPolychlorinated BiphenylsPLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	IDEM	Indiana Department of Environmental Management
PLPublished LevelR2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	PAHs	Polynuclear Aromatic Hydrocarbons
R2Risk-based Closure Guide (IDEM)RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	PCB	Polychlorinated Biphenyls
RCGRemediation Closure Guide (IDEM)RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	PL	Published Level
RCRAResource Conservation and Recovery ActRECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	R2	Risk-based Closure Guide (IDEM)
RECRecognized Environmental ConditionROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	RCG	Remediation Closure Guide (IDEM)
ROWRight-of-wayRPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	RCRA	Resource Conservation and Recovery Act
RPGRemediation Program Guide (IDEM)RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	REC	Recognized Environmental Condition
RSPLResidential Soil Published Level (IDEM R2)SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	ROW	Right-of-way
SLScreening LevelEPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	RPG	Remediation Program Guide (IDEM)
EPAUnited States Environmental Protection AgencyUSTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	RSPL	Residential Soil Published Level (IDEM R2)
USTUnderground Storage TankVECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	SL	Screening Level
VECVapor Encroachment ConditionVFCVirtual File CabinetVOCsVolatile Organic Compounds	EPA	United States Environmental Protection Agency
VFCVirtual File CabinetVOCsVolatile Organic Compounds	UST	Underground Storage Tank
VOCs Volatile Organic Compounds	VEC	Vapor Encroachment Condition
	VFC	Virtual File Cabinet
VSDI Execution Soil Dublished Lovel (IDEM P2)	VOCs	Volatile Organic Compounds
	XSPL	Excavation Soil Published Level (IDEM R2)

Executive Summary

Amereco, Inc., d/b/a Amereco Engineering (Amereco) has prepared this Further Site Investigation (FSI) Report on behalf of the City of Hammond, for the Former Memorial Park, located at 1301 Highland Street, Hammond, Lake County, Indiana 46320 ("Subject Site"). The FSI was conducted in general accordance with the Indiana Department of Environmental Management (IDEM) *Risk-based Closure Guide* (R2), effective July 8, 2022, applicable regulations, industry-accepted practices, and Amereco's professional judgment based on the proposed residential development.

The primary objective of the FSI was to further assess the contaminants of concerns (COCs) that were identified in on-Site surface soils by the previous Phase II Environmental Site Assessment (ESA), dated December 1, 2023, prepared by Amereco (project number 23.2128), to evaluate current and future potential direct contact exposure scenarios.

The findings of the previous Phase II ESA did not identify a concern within subsurface soils or volatile organic compounds (VOCs). However, notable surface soil and groundwater concerns were identified. Surface soil concerns were limited to arsenic, lead, and mercury. Based on the findings of the Phase II ESA, it was our professional recommendation that further investigation occur to delineate surface soil concerns and collect additional sampling data to evaluate risk should the Subject Site be developed into residential housing.

Based on the findings of the additional sampling performed on-Site, it is concluded that the representative concentrations from two proposed lots (Lots 22 and 38) identified lead and arsenic, respectively, in exceedance of IDEM R2 Residential Soil Published Levels (RSPLs). All other representative concentrations were below applicable IDEM RSPLs. Therefore, while individual samples may exceed IDEM RSPLs, it is not indicative of a risk to human health and the environment. Remediation can be conducted to further reduce risk. The lots and isolated areas of concern are outlined on **Figure 6**.

1. Background Information

1.1. Regional Location

The Subject Site is located in Section 6, Township 36N, Range 9W of North Township in Lake County, Indiana. The regional topography is relatively flat with a gentle slope northerly towards Lake Michigan. A Site Location Map is provided as **Figure 1** in **Appendix A**. A Site Plan depicting the entire extent of the Subject Site and proposed future development is provided as **Figure 2**.

1.2. Site Location

The Subject Property, known as the Former Memorial Park, located at 1301 Highland Street, Hammond, Lake County, Indiana 46320, consists of one approximately 17.85 acre parcel located north of Highland Street, south of a railroad right of way, and approximately 500-feet east of Columbia Avenue.

The Subject Site is located in an area of mixed use, with residential properties to the west and south, railroad property to the north and southeast, and industrial properties to the southeast. Additionally, the Subject Site borders the Pullman-Standard Historic District to the west and southwest. The Pullman-Standard Historic District comprises approximately 14 blocks of historic single and multi-family worker housing that was constructed between 1916 and 1918.

The Subject Site is currently used as Memorial Park, which includes three baseball fields, two basketball courts, a playground, an asphalt-paved parking lot, mowed open green space, a restroom structure, and a baseball fieldhouse structure. Based on aerial photos reviewed during the Phase I ESA, the restroom structure was built in or before 1949, and the fieldhouse was built in or before 1992.

1.3. Overview of Previous Site Environmental Investigations & Spill History

Phase I ESA, August 24, 2023, Amereco, Inc:

Amereco conducted a Phase I ESA, report dated August 24, 2023 (Project #23.2056), on the Subject Site in accordance with ASTM E1527-21. Amereco's 2023 Phase I ESA identified the following recognized environmental conditions (REC) in connection with the Subject Property:

 Historic Railroad Spurs and Likely Historic Use of Subject Property by Pullman-Standard Railcar Company

Amereco considered the lack of Sanborn Map details from 1915 to 1966 to be a significant data gap for the Phase I ESA. No other previous ESAs or soil and groundwater investigations are known to have been conducted on the Subject Property.

Phase II ESA, December 1, 2023, Amereco, Inc:

Amereco conducted a Phase II ESA, report dated December 1, 2023 (Project #23.2128), on the Subject Site in accordance with ASTM E1903-19. The primary purpose of the Phase II ESA was to assess the REC previously identified by the Phase I ESA.

The Phase II ESA included the advancement and sampling of 5 direct push soil borings, the collection of 50 surface soil samples, the installation and sampling of 5 temporary groundwater monitoring wells, and a ground penetrating radar (GPR) survey. Soil and groundwater sampling occurred between November 2-3, 2023 and the GPR survey occurred on December 2 and 6, 2023. A combination of judgmental and systematic sampling was completed so that sufficient data could be obtained to provide statistical confidence of on-Site conditions. In anticipation of the proposed residential development, the sampling plan was designed to include 1 surface soil sample from each of the 36 proposed single-family

residential lots, and 3 surface soil samples from each of the proposed senior housing and duplex lots and the proposed retention and park areas. However, due to the accuracy differences of GoogleEarth and the Trimble GPS Geo7x 7000 handheld data collector, a surface soil sample was inadvertently not collected from 1 of the proposed single-family lots and 1 of the proposed duplex lots. Thus, 2 surface soil samples, SS-34 and SS-35, were collected from 1 single-family lot and 2 surface samples, SS-15 and SS-19, were collected from 1 duplex lot. Amereco did not believe this deviation impacted the conclusions of the Phase II ESA report.

Soil analytical results from the Phase II ESA did not identify any volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), or RCRA 8 Metal concerns within subsurface soils (i.e., soils deeper than 2-feet bgs). However, arsenic, lead, and mercury were identified in on-Site surface soils (i.e., soils from 0 to 2-feet bgs) at concentrations above applicable IDEM R2 levels. The following table summarizes Phase II ESA soil concentrations identified in exceedance of IDEM R2 Published Levels.

Surface Soil Exceedances – Phase II ESA						
Sample ID (Depth Below Grade)	Date	Arsenic	Lead	Mercury		
SS-04 (0-2-ft bgs)	11-02-2023	23	96	<0.019		
SS-21 (0-2-ft bgs)	11-02-2023	6.6	<u>2,600</u>	0.036		
SS-38 (0-2-ft bgs)	11-03-2023	40	200	0.067		
SS-41 (0-2-ft bgs)	11-03-2023	3.9	32	<u>5.5</u>		
IDEM R2 Long Term Residential P	IDEM R2 Long Term Residential PL (RSPL) 10 400 3					
IDEM R2 Long Term Commercial PL	30	800	3			
IDEM R2 Short Term Excavation PL	<u>900</u>	<u>1,000</u>	<u>3</u>			

Notes: Values reported in milligrams per kilogram (mg/Kg), <=less than

Groundwater analytical results from the Phase II ESA did not identify any VOC, PAH, or Polychlorinated Biphenyl (PCB) concerns within on-Site groundwater. Total arsenic and total lead concentrations were identified above IDEM R2 PLs in all 5 groundwater samples (GW-01 through GW-05). However, based on analytical results of subsequent dissolved metal analysis of samples GW-01 through GW-05, it was concluded that the total metals identified in the unfiltered groundwater samples in exceedance of regulatory levels were a result of turbidity (solids) in the samples and not representative of on-Site groundwater conditions. The following table summarizes Phase II ESA groundwater concentrations identified in exceedance of IDEM R2 Published Levels.

	Groundwater Exceedances – Phase II ESA						
Sample ID	Date	Temporary Well /	Arsenic,	Arsenic,	Lead,	Lead,	
Sample ID	Date	GW Depth	Total	Dissolved	Total	Dissolved	
GW-01	11/02/2023	TMW-01 / 3.43-ft bgs	39	<4.0	47	<2.0	
GW-02	11/02/2023	TMW-02 / 3.14-ft bgs	66	16	43	<2.0	
GW-03	11/02/2023	TMW-03 / 3.75-ft bgs	13	<4.0	25	<2.0	
GW-04	11/02/2023	TMW-04 / 3.93-ft bgs	16	7.3	13	<2.0	
GW-05	11/02/2023	TMW-05 / 3.29-ft bgs	47	4.4	120	<2.0	
IDEM R2 Long Term Groundwater PL (GWPL)			10	10	15	15	

Note: Values reported in micrograms per liter (µg/L), <=less than

Dissolved arsenic was identified in groundwater sample GW-02 at a concentration above the IDEM R2 PL. Therefore, it was and is our professional recommendation that no drinking water wells be installed on the Subject Site without additional investigations. Furthermore, §52.02 of the City of Hammond Code of Ordinances (ord. 8581, passed 7-26-2004), prohibits the use of groundwater as a potable water supply from within the corporate limits of the City.

Based on the calculated Site-specific representative concentrations for arsenic and lead in surface soils, it was determined that the on-Site surface soil does not present an exposure hazard concern based on the current use as a park. Further investigation was recommended to delineate surface soil concerns due to the proposed redevelopment of the Site.

Findings of the on-Site GPR survey, performed by Subsurface Radar Solution, LLC on November 2 and 6, 2023, did not identify any anomalies representative of underground storage tanks (USTs), building foundations, or areas of significant fill material, such as building rubble, on the Subject Property.

2. Further Site Investigation

2.1. Objectives of Further Site Investigation

The primary objective of the FSI was to further assess the COCs (arsenic, lead, and mercury) that were identified in on-Site surface soils by the previous Phase II ESA, dated December 1, 2023, prepared by Amereco (project number 23.2128), to evaluate current and future potential direct contact exposure scenarios.

2.2. Chemical Testing Plan

The chemical testing plan was developed to detect contaminants previously identified in on-Site surface soils. The following table summarizes the sample analyses and corresponding methods:

Target Analytes for Samples						
Sample Analysis Media Methodology						
Arsenic	Soil	EPA SW-846 3050B and 6020A				
Lead	Soil	EPA SW-846 3050B and 7000B				
Mercury	Soil	EPA SW-846 3050B and 7471B				

All arsenic and mercury laboratory analyses were conducted by The Sterling Lab, formerly known as STAT Analysis Corporation, 2242 W. Harrison Street, Chicago, IL 60612. All lead laboratory analyses were conducted by Accurate Analytical Testing LLC, 30105 Beverly Road, Romulus, MI 48174. A completed chain of custody accompanied the samples to each laboratory. The chain of custody provides documentation regarding sample collection/handling, which identifies individuals involved in the chain of sample possession and a record of requested analytical parameters. Sample IDs, collection dates, and collection times can be found on the Chain of Custody forms provided in **Appendix E**.

2.3. Conceptual Site Model & Sampling Plan

All procedures during this investigation followed those recommended by the IDEM *Risk-Based Closure Guide* (R2), effective July 8, 2022, applicable regulations, industry-accepted practices, and Amereco's professional judgment based on the proposed residential development.

This Site model takes into consideration the potential distributions of contaminants with respect to the properties, behaviors and fate, and transport characteristics of the contaminant being assessed and the proposed residential development. The sampling plan was designed to provide for the collection of potentially contaminated environmental media, if present, at locations and depths where the highest concentrations would likely occur, based on the COCs previously identified during the Phase II ESA.

A combination of judgmental sampling via step-out sampling from Phase II ESA sample locations SS-21, SS-38, and SS-41, all of which are located on three different lots proposed for single-family or duplex housing, and systematic sampling of the area proposed for senior housing, which includes Phase II ESA sample location SS-04, was completed so that sufficient data could be obtained to provide statistical confidence of on-Site conditions for each decision unit. The sampling plan was designed to include at least 10 surface soil samples were collected from each of the lots of concern to statistically evaluate the overall risk of each of the proposed lots. The proposed residential layout follows that which is depicted on the Yield Plan, drafted by American Structurepoint Inc., dated July 11, 2023, and provided to Amereco by the Client.

For the purpose of this report, the lot that includes Phase II ESA parent sample SS-21 will be referred to as "Lot 21", the lot with parent sample SS-22 will be referred to as "Lot 22", the lot with parent sample SS-38 will be referred to as "Lot 38", the lot with parent sample SS-41 will be referred to as "Lot 41", and the lot with parent samples SS-50 and SS-43 will be referred to as "Lot 50".

Before mobilization to the Site, Amereco identified step-off locations 20-linear feet north, south, east, and west of Phase II ESA samples SS-21, SS-38, and SS-41. Should the step-off sampling include an adjoining proposed residential lot, as was the case north of SS-21 and south of SS-38, additional sample locations were randomly identified so that each proposed residential lot has 10 sample locations. Thus, Lots 21, 22, 38, 41, and 50 were evaluated during this FSI along with the area proposed for Senior Housing where 4 surface soil sample locations were randomly identified prior to mobilization.

To locate the proposed surface soil sample locations in the field Amereco utilized an Arrow 100[®] Submeter GNSS Receiver from EOS Positioning Systems to capture real-time GPS positions with submeter accuracy. The locations depicted on **Figures 2 and 3** reflect the GPS coordinates obtained from the Arrow 100[®] Submeter GNSS Receiver unit.

Sampling Plan – Surface Soil				
Sample ID	Rationale			
SS-51	Further evaluate proposed senior housing area for arsenic			
SS-52	Further evaluate proposed senior housing area for arsenic			
SS-53	Further evaluate proposed senior housing area for arsenic			
SS-54	Further evaluate proposed senior housing area for arsenic			
SS-21A	Further evaluate lead 20-ft east of SS-21, Lot 21			
SS-21B	Further evaluate lead 20-ft south of SS-21, Lot 21			
SS-21C	Further evaluate lead 20-ft west of SS-21, Lot 21			
SS-22A	Further evaluate lead 20-ft north of SS-21, Lot 22			
SS-21E	Further evaluate Lot 21 for lead			
SS-21F	Further evaluate Lot 21 for lead			
SS-21G	Further evaluate Lot 21 for lead			
SS-21H	Further evaluate Lot 21 for lead			
SS-21I	Further evaluate Lot 21 for lead			
SS-21J	Further evaluate Lot 21 for lead			
SS-22B	Further evaluate Lot 22 for lead			
SS-22C	Further evaluate Lot 22 for lead			
SS-22D	Further evaluate Lot 22 for lead			
SS-22E	Further evaluate Lot 22 for lead			
SS-22F	Further evaluate Lot 22 for lead			
SS-22G	Further evaluate Lot 22 for lead			
SS-22H	Further evaluate Lot 22 for lead			
SS-22I	Further evaluate Lot 22 for lead			
SS-41A	Further evaluate mercury 20-ft east of SS-41, Lot 41			
SS-41B	Further evaluate mercury 20-ft south of SS-41, Lot 41			
SS-41C	Further evaluate mercury 20-ft west of SS-41, Lot 41			
SS-41D	Further evaluate mercury 20-ft north of SS-41, Lot 41			
SS-41F	Further evaluate Lot 41 for mercury			
SS-41G	Further evaluate Lot 41 for mercury			
SS-41H	Further evaluate Lot 41 for mercury			
SS-41I	Further evaluate Lot 41 for mercury			

The following table summarizes the rational and COCs for each of the 41 sample locations:

Sampling Plan – Surface Soil				
Sample ID	Rationale			
SS-38A	Further evaluate arsenic 20-ft east of SS-38, Lot 38			
SS-38B	Further evaluate arsenic 20-ft north of SS-38, Lot 38			
SS-41E	Further evaluate mercury and arsenic 20-ft west of SS-38, Lot 41			
SS-38C	Further evaluate Lot 38 for arsenic			
SS-38D	Further evaluate Lot 38 for arsenic			
SS-38E	Further evaluate Lot 38 for arsenic			
SS-38F	Further evaluate Lot 38 for arsenic			
SS-38G	Further evaluate Lot 38 for arsenic			
SS-38H	Further evaluate Lot 38 for arsenic			
SS-38I	Further evaluate Lot 38 for arsenic			
SS-50A	Further evaluate arsenic 20-ft south of SS-38, Lot 50			

2.4. Surface Soil Sampling

As part of this FSI, 41 surface soil samples were collected from the Subject Site between December 13 and 14, 2023. Disposable nitrile gloves were worn by sampling personnel and were changed between each sample location. Surface soil samples were collected utilizing a hand auger from the top 2-feet of soil at each location. The hand auger was decontaminated before use and between each sample location using Alconox[®] solution and the triple rinse method. Surface soil sampling locations are depicted on **Figures 2** and **3**.

The following sample containers were utilized based on the selected analysis:

Sample Collection Information – Surface Soil Samples							
Sample Analysis	Sample Analysis Sample Container Preservative Hold Time						
Arsenic, Lead,	1 x 4-oz Jar with PTFE Lined Cap	Non-preserved, 4° C	180 days				
Mercury 1 x 4-oz Jar with PTFE Lined Cap Non-preserved, 4° C 28 days							

2.5. Site Geology

No soil borings were advanced as part of the FSI. The soil borings previously advanced on-Site during the Phase II ESA primarily identified fine to medium-grained sands to boring termination at 8-feet bgs.

Fill material was observed during this FSI at the following sample locations: SS-21A, SS-21B, SS-21C, SS-21H, SS-22A, SS-22E, and SS-54. Note that fill material, a large metal bolt, slag, and cinders were encountered in sample SS-21 during the Phase II ESA.

All other sample locations primarily consisted of various sands and/or silty sand. A surface soil sample log form summarizing the soil conditions encountered at each sample location during this FSI is included in **Appendix C**.

2.6. Site Hydrogeology

Hydrogeological conditions were not further investigated during the FSI.

During the previous Phase II ESA, on-Site groundwater was encountered at depths ranging from 3.14-feet bgs (TMW-02, near the south boundary) and 3.93-feet bgs (TMW-04, near the northeast boundary).

3. Analytical Results

Analytical data obtained from this investigation are compared against applicable regulatory levels for residential use, as published by IDEM in Table 1 of the R2, updated March 1, 2023 (Nonrule Policy Document WASTE-0046-R2).

In consideration of soil management, IDEM *Remediation Closure Guide* (RCG) 2022 Soil Migration to Groundwater (SMTG) Screening Levels (SLs) are also depicted on the tabulated summaries. Concentrations identified above RCG SMTG SLs render soil removed from the Subject Site as "unclean" material per IDEM's Nonrule Policy Document WASTE-0064-NPD, *Uncontaminated Soil Policy*, effective April 10, 2015.

3.1. Soil Analytical Results

Surface soil analytical results compared against applicable IDEM R2 PLs can be found in **Appendix A** in tabular format. Analytical results from Lots 21 and 22 are summarized on **Figure 3**. Analytical results from Lots 38 and 41 are summarized on **Figure 4**. Analytical results from the areas proposed for senior housing are summarized on **Figure 5**. Phase II ESA parent samples from Lot 21 (SS-21), Lot 22 (SS-22), Lot 38 (SS-38), Lot 41 (SS-41), and from the proposed senior housing area (SS-01, SS-02, SS-04, SS-06, SS-07, and SS-08) are also summarized on the figures and tables.

The tables below summarize samples and contaminants identified during this FSI and the previous Phase II ESA that exceed IDEM R2 PLs.

Surface Soil Exceedances – Residential Duplex Lots 21 and 22					
	Sample ID	Depth Below Grade	Arsenic	Lead	Mercury
	SS-21	0-2 ft bgs	6.6	<u>2,600</u>	0.036
	SS-21A	0-2 ft bgs	NA	71	NA
	SS-21B	0-2 ft bgs	NA	270	NA
	SS-21C	0-2 ft bgs	NA	406	NA
21	SS-21E	0-2 ft bgs	NA	150	NA
Lot	SS-21F	0-2 ft bgs	NA	<10.9	NA
	SS-21G	0-2 ft bgs	NA	<11.4	NA
	SS-21H	0-2 ft bgs	NA	116	NA
	SS-21I	0-2 ft bgs	NA	24	NA
	SS-21J	0-2 ft bgs	NA	<11.5	NA
	SS-22	0-2 ft bgs	2.7	20	< 0.020
	SS-22A	0-2 ft bgs	NA	<u>13,900</u>	NA
	SS-22B	0-2 ft bgs	NA	52.7	NA
	SS-22C	0-2 ft bgs	NA	310	NA
22	SS-22D	0-2 ft bgs	NA	53.6	NA
Lot	SS-22E	0-2 ft bgs	NA	452	NA
	SS-22F	0-2 ft bgs	NA	21.8	NA
	SS-22G	0-2 ft bgs	NA	83.9	NA
	SS-22H	0-2 ft bgs	NA	290	NA
	SS-22I	0-2 ft bgs	NA	151	NA
IDE	IDEM R2 Long Term Residential PL (RSPL)		10	400	3
IDE	M R2 Long Term Con	nmercial PL (CSPL)	30	800	3
IDEI	M R2 Short Term Exc	cavation PL (XSPL)	<u>900</u>	<u>1,000</u>	<u>3</u>

Notes: Values reported in milligrams per kilogram (mg/Kg), <=less than, NA = Not Analyzed

	Surface Soil Exceedances - Single-Family Lots 38 and 41				
	Sample ID	Depth Below Grade	Arsenic	Lead	Mercury
	SS-38	0-2 ft bgs	40	200	0.067
	SS-38A	0-2 ft bgs	3.4	NA	NA
	SS-38B	0-2 ft bgs	3.2	NA	NA
	SS-38C	0-2 ft bgs	7.1	NA	NA
38	SS-38D	0-2 ft bgs	1.7	NA	NA
Lot	SS-38E	0-2 ft bgs	2.3	NA	NA
	SS-38F	0-2 ft bgs	49	NA	NA
	SS-38G	0-2 ft bgs	10	NA	NA
	SS-38H	0-2 ft bgs	5.4	NA	NA
	SS-38I	0-2 ft bgs	< 1.1	NA	NA
	SS-41	0-2 ft bgs	3.9	32	<u>5.5</u>
	SS-41A	0-2 ft bgs	NA	NA	0.24
	SS-41B	0-2 ft bgs	NA	NA	< 0.023
	SS-41C	0-2 ft bgs	NA	NA	0.030
41	SS-41D	0-2 ft bgs	NA	NA	0.074
Lot	SS-41E	0-2 ft bgs	11	NA	< 0.021
	SS-41F	0-2 ft bgs	NA	NA	0.038
	SS-41G	0-2 ft bgs	NA	NA	< 0.019
	SS-41H	0-2 ft bgs	NA	NA	0.037
	SS-41I	0-2 ft bgs	NA	NA	< 0.019
IDEM R2 Long Term Residential PL (RSPL)			10	400	3
	M R2 Long Term Con		30	800	3
IDE	M R2 Short Term Exc	cavation PL (XSPL)	<u>900</u>	<u>1,000</u>	<u>3</u>

Notes: Values reported in milligrams per kilogram (mg/Kg), <=less than, NA = Not Analyzed

Surface Soil Exceedances - Senior Housing						
	Sample ID	Depth Below Grade	Arsenic	Lead	Mercury	
	SS-01	0-2 ft bgs	6.8	150	0.043	
	SS-02	0-2 ft bgs	4.7	34	0.020	
g	SS-04	0-2 ft bgs	23	96	< 0.019	
Housing	SS-06	0-2 ft bgs	2.3	60	< 0.019	
٦ م	SS-07	0-2 ft bgs	6.1	20	< 0.018	
orł	SS-08	0-2 ft bgs	4.4	170	0.022	
Senior	SS-51	0-2 ft bgs	< 1.1	NA	NA	
Ň	SS-52	0-2 ft bgs	8.4	NA	NA	
	SS-53	0-2 ft bgs	< 0.98	NA	NA	
	SS-54	0-2 ft bgs	4.4	NA	NA	
IDE	IDEM R2 Long Term Residential PL (RSPL) 10 400 3					
IDE	IDEM R2 Long Term Commercial PL (CSPL) 30 800 3					
IDE	IDEM R2 Short Term Excavation PL (XSPL) 900 1,000 3					

Notes: Values reported in milligrams per kilogram (mg/Kg), <=less than, NA = Not Analyzed

Regarding soil management, in addition to the above IDEM R2 PL exceedances, arsenic was identified in samples SS-21 SS-38C, SS-38G, and SS-52 at concentrations above the IDEM RCG SMTG SL.

4. Discussion of Representative Concentrations & Conclusions

4.1. Representative Concentrations

Section 3.2.2.1 Determining Representative Concentrations in Soil of the IDEM R2 allows a calculated upper confidence limit of the mean (95% UCL) to serve as a representative concentration for arsenic and mercury, and the arithmetic average to serve as a representative concentration for lead across decision units with sufficient data.

Following this approach representative concentrations were calculated for arsenic, mercury, and lead in the on-Site surface soils (0-2-ft bgs) decision unit. Amereco used the EPA ProUCL 5.2 program to calculate the 95% UCL and the best applicable statistical test recommended by ProUCL. Concentrations that were identified below laboratory reporting limits (LRLs) were entered as one-half the concentration (i.e., <1.0 was entered as 0.5). ProUCL output data sheets are provided in **Appendix B**. Representative concentrations are summarized in the table below:

Rej	Representative Concentrations Summary										
Decision Unit	сос	Representative Concentration (mg/Kg)	Default IDEM R2 Residential PL (mg/kg)								
Surface Soils on Lot 21	Lead	365.39	400								
Surface Soils on Lot 22	Lead	1,533.50*	400								
Surface Soils on Lot 38	Arsenic	33.98*	10								
Surface Soils on Lot 41	Mercury	1.596	3								
Surface Soils on Senior Housing Area	Arsenic	9.86	10								

*Indicates representative concentration exceeds IDEM R2 PL

The Site-specific representative lead concentration of 1,533.50-mg/Kg in surface soils across Lot 22 and the representative arsenic concentration of 33.98-mg/Kg across Lot 38 surface soils are above applicable IDEM R2 RSPLs of 400-mg/Kg and 10-mg/Kg, respectively.

All other lead, arsenic, and/or mercury representative concentrations in surface soils across Lot 21, Lot 41, and the area proposed for Senior Housing are below IDEM R2 RSPLs.

4.2. Conclusions

From a risk perspective, the following conclusions and recommendations have been made about the on-Site surface soil decision units.

<u>Lot 21:</u>

The results of this FSI identified isolated surface soil lead concerns on Lot 21. To date, three samples from Lot 21 have identified lead at concentrations above IDEM R2 PLs established for residential use and excavation workers. The representative lead concentration across Lot 21 decision unit is below the IDEM R2 RSPL. Thus, available analytical data indicates the elevated lead concerns on or near Lot 21 are isolated to the vicinity of surface soil samples SS-21 and SS-21C and SS-22A, all of which are clustered within an approximately 2,000-square foot area and where unsatisfactory fill material was observed.

Lot 22:

The results of this FSI identified isolated surface soil lead concerns on Lot 22 and the representative lead concentration across Lot 22 is above the IDEM R2 RSPL. However, the lead concentration of 13,900-mg/Kg in surface soil sample SS-22A is likely the reason for the elevated representative concentration. When this value is removed from the calculation, the representative lead concentration is satisfactory. To date, sample SS-22A is the only sample from Lot 22 that has identified an elevated lead concentration. Thus, available analytical data indicates the elevated lead concern on Lot 22 is isolated to the vicinity of surface soil sample SS-22A, where fill material was observed. Sample SS-22A was also discussed above under Lot 21.

Lot 38:

The results of this FSI identified isolated surface soil arsenic concerns on Lot 38 and the representative arsenic concentration across Lot 38 is above the IDEM R2 PL for commercial use (CSPL). To date, two samples from Lot 38 have identified arsenic at concentrations above IDEM R2 CSPLs. Thus, available analytical data indicates the elevated arsenic concerns on Lot 38 are isolated to an approximately 20-foot radius around surface soil sample SS-38.

Lot 41:

The results of this FSI identified isolated surface soil mercury concerns on Lot 41. To date, only one sample from Lot 41 has identified mercury at concentrations above IDEM R2 PLs established for residential use and excavation workers. Furthermore, the representative mercury concentration across Lot 41 decision unit is below the IDEM R2 RSPL. Thus, available analytical data indicates the elevated mercury concern on Lot 41 is isolated to an approximately 20-foot radius around surface soil sample SS-41.

Senior Housing Area:

The results of this FSI identified isolated surface soil arsenic concerns on the area proposed for Senior Housing. To date, only one sample from the area has identified arsenic at a concentration above the IDEM R2 PL established for residential use. Studies conducted by the IDEM and USGS indicate it is typical to identify arsenic, a naturally occurring element indigenous to soil formations in Indiana, in non-impacted soils of Northwest Indiana at levels ranging from 7.6 to 13.21-mg/Kg. Except for the arsenic identified in sample SS-04, the on-Site arsenic concentrations are within background levels. Furthermore, the representative arsenic concentration across the decision unit is below the IDEM R2 RSPL. Thus, available analytical data indicates the elevated arsenic concern on the area proposed for Senior Housing is isolated to an approximately 80-foot radius around surface soil sample SS-04.

4.3. Recommendations

Should the Site be developed into residential housing, it is our professional recommendation that corrective actions be conducted to reduce potential exposure pathways for future occupants. The most effective remedial action would be source removal, excavating the unsatisfactory soil and disposing in accordance with local, state and federal rules and regulations. The lots and isolated areas of concern are outlined on **Figure 6**.

Regarding soil management, in addition to the IDEM R2 PL exceedances, arsenic was identified in samples SS-21 SS-38C, SS-38G, and SS-52 at concentrations above the IDEM RCG SMTG SL. The soil within these areas should be managed in accordance with IDEM's Nonrule Policy Document WASTE-0064-NPD, *Uncontaminated Soil Policy*, effective April 10, 2015.

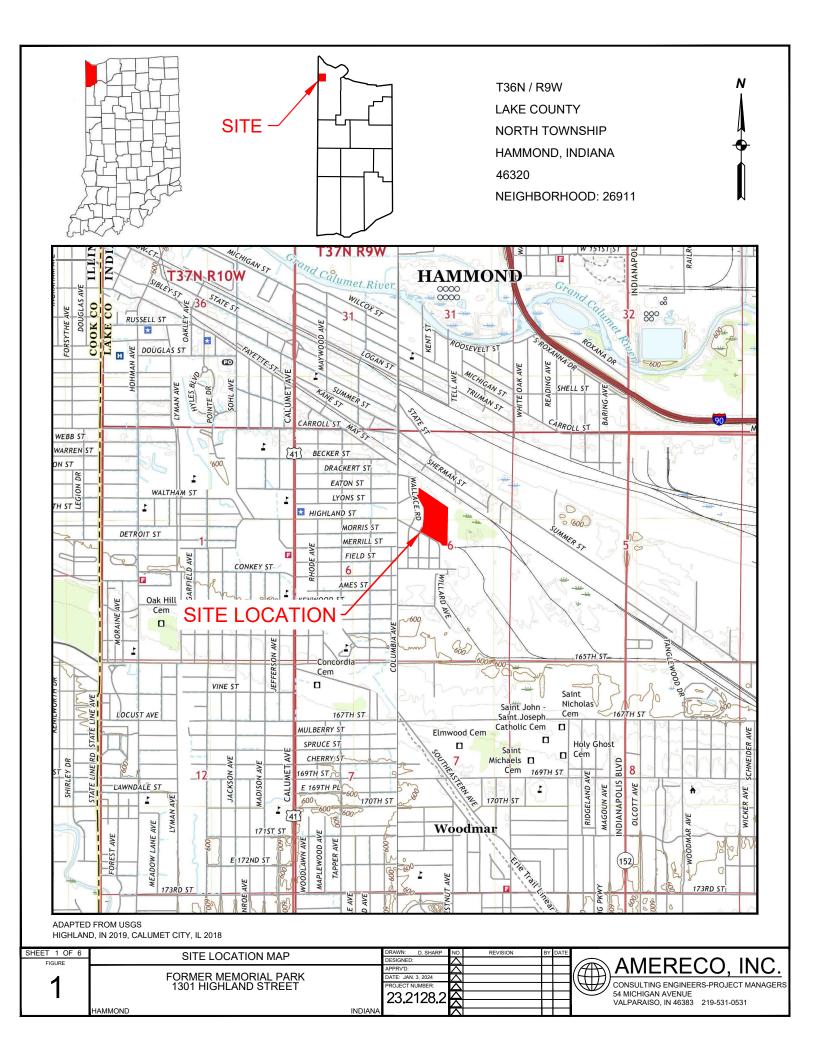
5. References

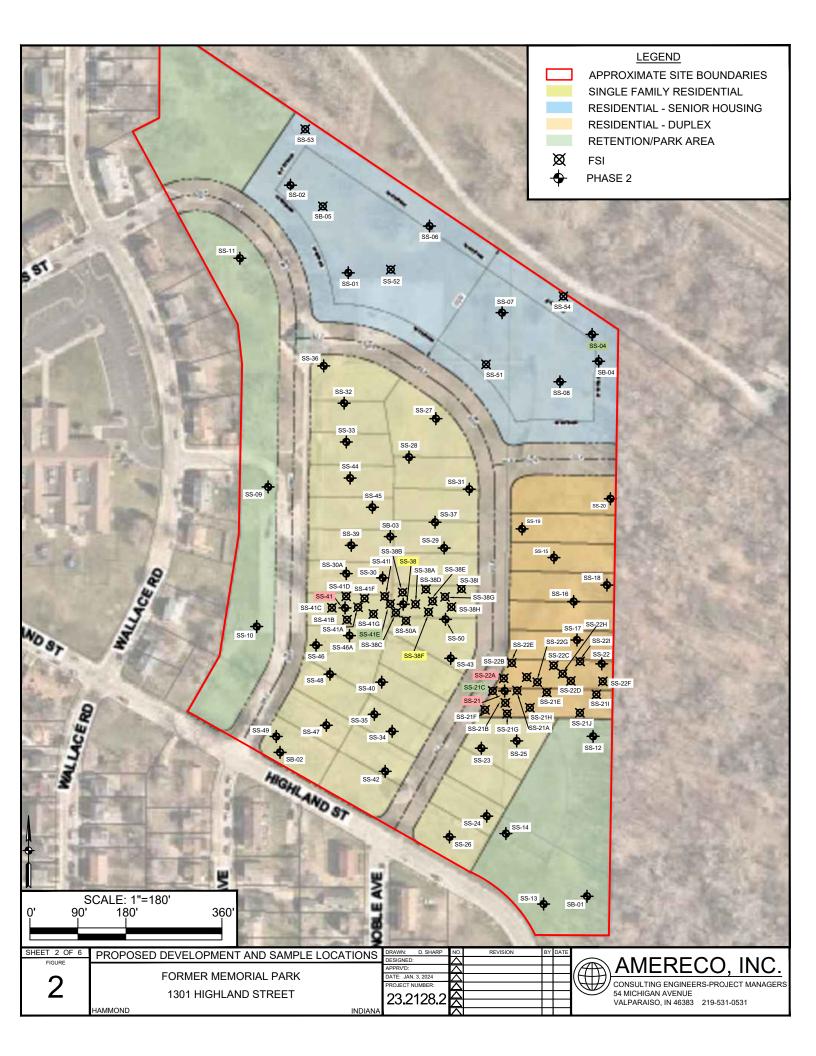
Amereco Engineering, *Phase I Environmental Site Assessment* – Former Memorial Park, 1301 Highland Street, Hammond, IN 46320, Project No. 23.2128, December 1, 2023.

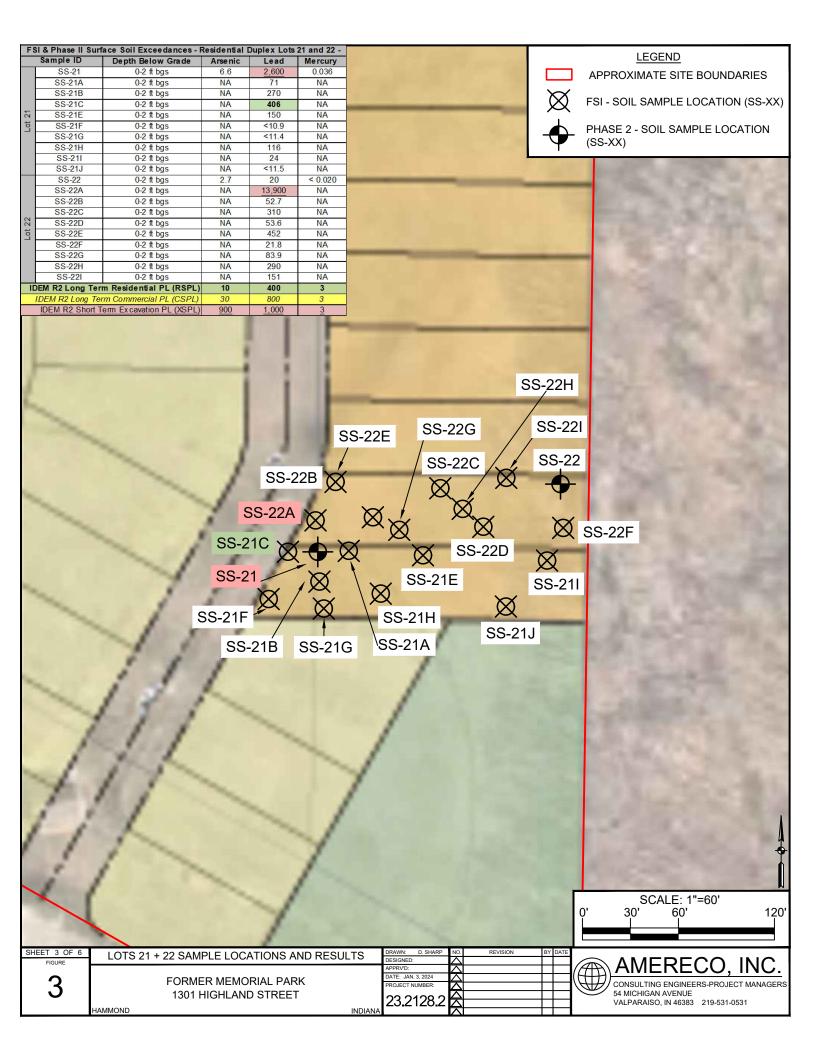
Indiana Department of Environmental Management, *Background Lead and Arsenic Surface Soil Levels*, Indianapolis, Indiana, June and July 2017, <u>https://www.in.gov/idem/cleanups/resources/technical-guidance-for-cleanups/</u>

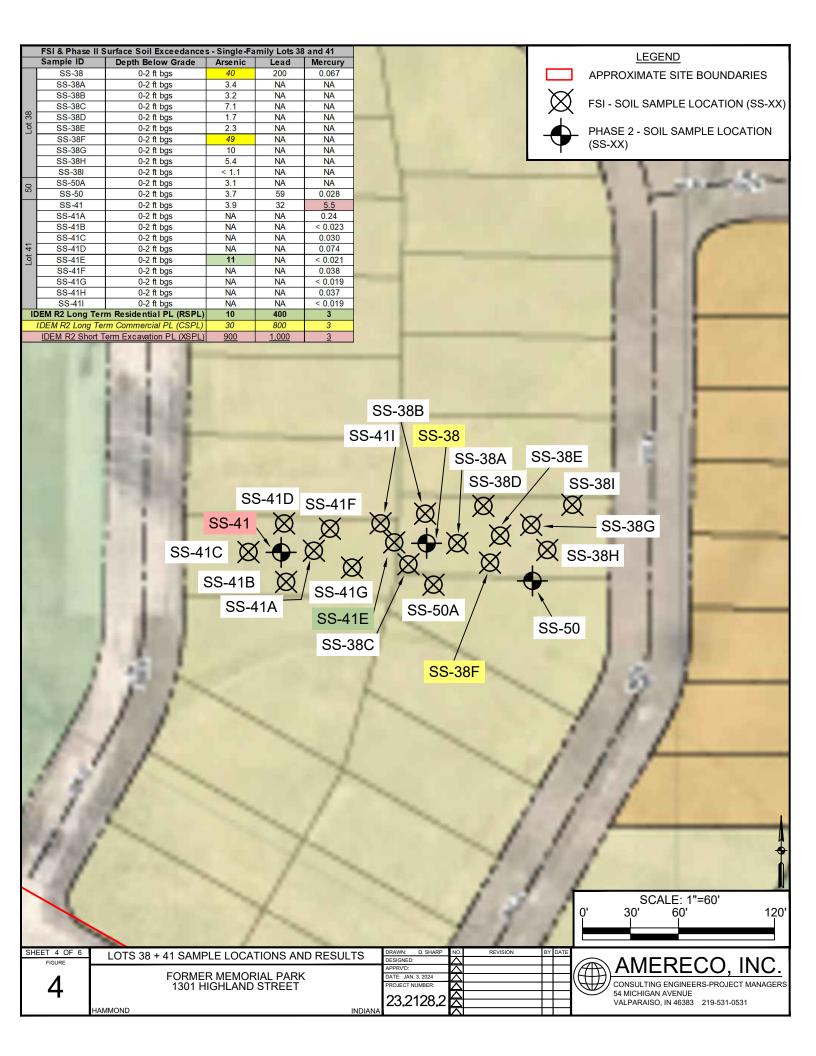
Indiana Department of Environmental Management (IDEM), Remediation Closure Guide, July 9, 2012.

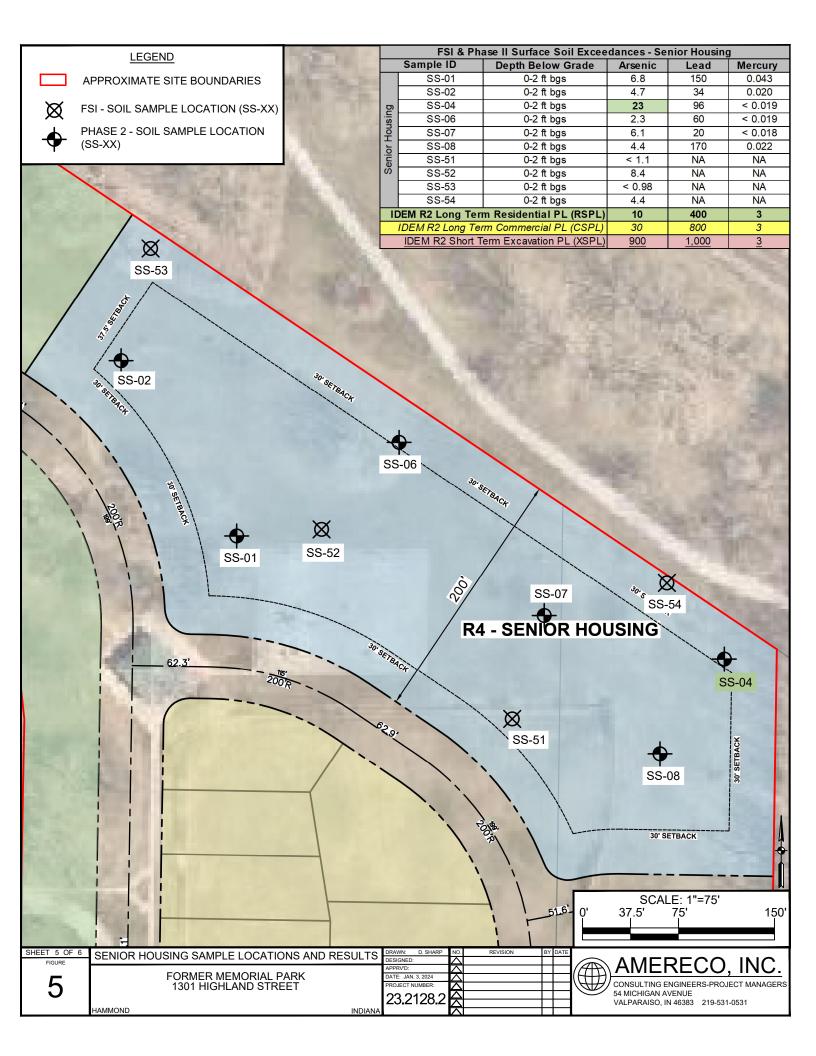
Indiana Department of Environmental Management (IDEM), *Risk-Based Closure Guide*, Nonrule Policy Document WASTE-0046-R2, July 8, 2022.

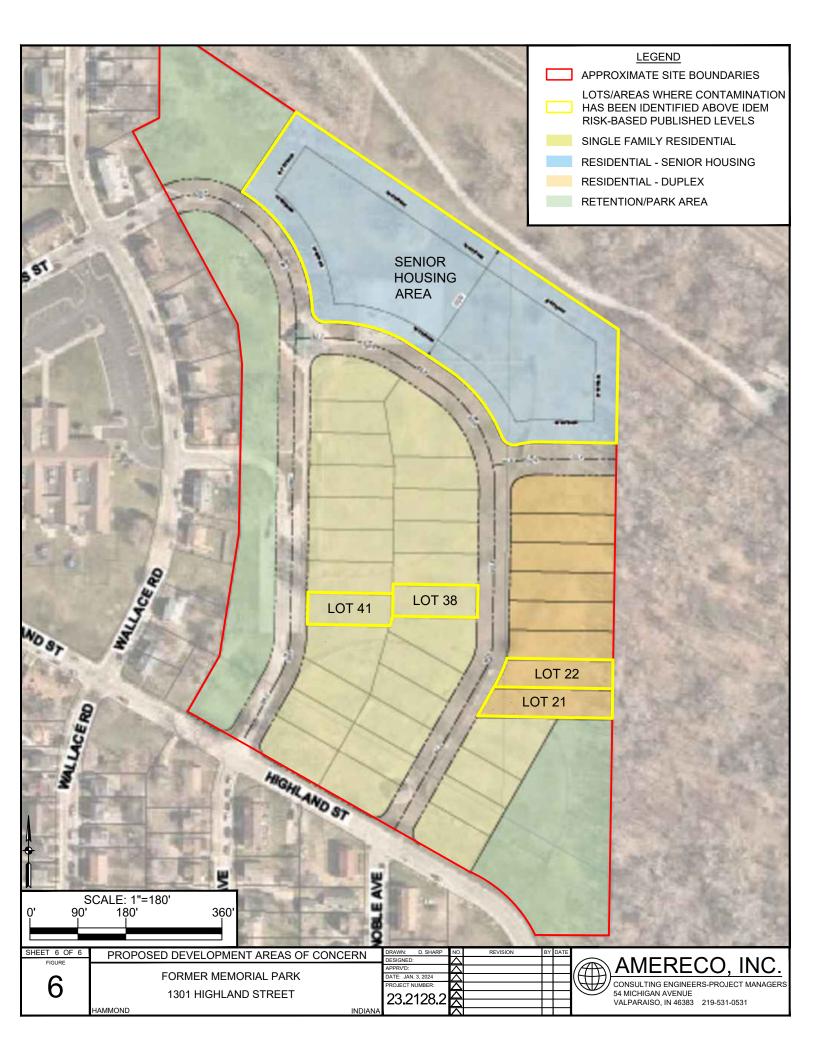

Indiana Department of Environmental Management (IDEM), *Uncontaminated Soil Policy*, Nonrule Policy Document WASTE-0064-NPD, April 10, 2015.


United States Geological Survey, *Geochemical and Mineralogical Maps for Soils of the Conterminous U.S.*, USGS Open-File Report 2014-1082 and USGS Data Series 801, Updated May 16, 2014, <u>https://pubs.usgs.gov/of/2014/1082/</u>


United States Geological Survey, *The National Geochemical Survey*, U.S. Geological Survey Open-File Report 2004-1001, Version 5.0, Updated September 30, 2008, <u>https://mrdata.usgs.gov/geochem/doc/home.htm</u>


Appendix A


Figures



Appendix B

Tabulated Sample Results And ProUCL Output Data Sheets

Surface Soil Sample Summary

					Lat	ooratory ID :	23110176-031	9025487	9025488	9025489
					Customer	Sample ID :	SS-21	SS-21A	SS-21B	SS-21C
					Date	e Collected :	11/02/2023	12/13/2023	12/13/2023	12/13/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 21	Lot 21	Lot 21	Lot 21
	Chemi	cal	Long Term		Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name CASRN Residential Commercial E		Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg		
a	Arsenic 7440-38-2		10	30	900	5.90	6.6	NA	NA	NA
leta	Lead	7439-92-1	400	800	1,000	270	2,600	71	270	406
	[≥] Mercury 7439-97-6 3.00 3.00 3.00			2.10	0.036	NA	NA	NA		

					Lat	ooratory ID :	9025491	9025492	9025493	9025494
					Customer	Sample ID :	SS-21E	SS-21F	SS-21G	SS-21H
					Date	e Collected :	12/13/2023	12/13/2023	12/13/2023	12/13/2023
_			ID	EM R2 PLs 20)23	2022 IDEM	Lot 21	Lot 21	Lot 21	Lot 21
	Chemi	ical	Long	Term	Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name	CASRN	Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg
a	Arsenic 7440-38-2		10	30	900	5.90	NA	NA	NA	NA
leta	Lead	7439-92-1	400	800	1,000	270	150	<10.9	<11.4	116
2	Mercury 7439-97-6 3.00 3.00 3.00		2.10	NA	NA	NA	NA			

					Lat	ooratory ID :	9025495	9025496	23110176-032	9025490
					Customer	Sample ID :	SS-21I	SS-21J	SS-22	SS-22A
					Date	e Collected :	12/13/2023	12/13/2023	11/02/2023	12/13/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 21	Lot 21	Lot 22	Lot 22
	Chemi	ical	Long	Term	Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name CASRN Residential Comme		Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
<u>ه</u>	Arsenic	7440-38-2	10	30	900	5.90	NA	NA	2.7	NA
leta	Lead	7439-92-1	400	800	1,000	270	24	<11.5	20	13,900
2	Mercury 7439-97-6 3.00 3.00 3.00			2.10	NA	NA	< 0.020	NA		

Laboratory ID : 9039245 9039246 9039247 9039248 Customer Sample ID : SS-22B SS-22C SS-22D SS-22E Date Collected 12/14/2023 12/14/2023 12/14/2023 12/14/2023 IDEM R2 PLs 2023 2022 IDEM Lot 22 Lot 22 Lot 22 Lot 22 Chemical Long Term Short Term RCG 0-2-ft bgs 0-2-ft bgs 0-2-ft bgs 0-2-ft bgs CASRN Name Residential Commercial Excavation Soil MTG mg/Kg mg/Kg mg/Kg mg/Kg 7440-38-2 10 30 900 5.90 NA NA NA NA Arsenic Metal 7439-92-1 400 800 270 310 452 1,000 52.7 53.6 Lead Mercury 7439-97-6 3.00 3.00 3.00 2.10 NA NA NA NA

					Lat	ooratory ID :	9039249	9039250	9039251	9039252
					Customer	Sample ID :	SS-22F	SS-22G	SS-22H	SS-22I
					Date	e Collected :	12/14/2023	12/14/2023	12/14/2023	12/14/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 22	Lot 22	Lot 22	Lot 22
	Chemi	ical	Long	Term	Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name CASRN		Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg
<u>_</u>	Arsenic 7440-38-2		10	30	900	5.90	NA	NA	NA	NA
leta	Lead 7439-92-1 400 800 1,		1,000	270	21.8	83.9	290	151		
2	[≥] Mercury 7439-97-6 3.00 3.00 3.00				2.10	NA	NA	NA	NA	

					Lat	poratory ID :	23110176-048	23120443-010	23120443-012	23120443-013
					Customer	Sample ID :	SS-38	SS-38A	SS-38B	SS-38C
					Date	e Collected :	11/03/2023	12/13/2023	12/13/2023	12/13/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 38	Lot 38	Lot 38	Lot 38
	Chemi	ical	Long Term		Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name	CASRN	Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg
٩	Arsenic 7440-38-2		10	30	900	5.90	40	3.4	3.2	7.1
leta	Lead	7439-92-1	400	800	1,000	270	200	NA	NA	NA
2	Mercury 7439-97-6 3.00 3.00 3.00				2.10	0.067	NA	NA	NA	

					Lat	ooratory ID :	23120443-014	23120443-015	23120443-016	23120443-017
					Customer	Sample ID :	SS-38D	SS-38E	SS-38F	SS-38G
					Date	e Collected :	12/13/2023	12/13/2023	12/13/2023	12/13/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 38	Lot 38	Lot 38	Lot 38
	Chemi	ical	Long	Term	Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name	CASRN	Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Arsenic 7440-38-2 Lead 7439-92-1		10	30	900	5.90	1.7	2.3	49	10	
leta	_ead 7439-92-1 400 800 1,000		270	NA	NA	NA	NA			
2	Mercury 7439-97-6 3.00 3.00 3.00 2.10				NA	NA	NA	NA		

Surface Soil Sample Summary

					Lat	ooratory ID :	23120443-018	23120443-019	23120443-011	23110176-060
					Customer	Sample ID :	SS-38H	SS-38I	SS-50A	SS-50
					Date	e Collected :	12/13/2023	12/13/2023	12/13/2023	11/03/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 38	Lot 38	Lot 50	Lot 50
	Chem	ical	Long Term		Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name	CASRN	Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg
7	Arsenic 7440-38-2 10 30 900		5.90	5.4	< 1.1	3.1	3.7			
let	Lead	7439-92-1	400	800	1,000	270	NA	NA	NA	59
2	Mercury 7439-97-6 3.00 3.00 3.00			2.10	NA	NA	NA	0.028		

					Lat	ooratory ID :	23110176-051	23120443-001	23120443-002	23120443-003
					Customer	Sample ID :	SS-41	SS-41A	SS-41B	SS-41C
					Date	e Collected :	11/03/2023	12/13/2023	12/13/2023	12/13/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 41	Lot 41	Lot 41	Lot 41
	Chem	ical	Long Term		Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name	CASRN	Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg
a	Arsenic 7440-3		10	30	900	5.90	3.9	NA	NA	NA
leta	Lead	7439-92-1	400	800	1,000	270	32	NA	NA	NA
2	Mercury 7439-97-6 3.00 3.00 3.00				2.10	5.50	0.240	< 0.023	0.030	

Surface Soil Sample Summary

					Lat	ooratory ID :	23120443-004	23120443-005	23120443-006	23120443-007
					Customer	Sample ID :	SS-41D	SS-41E	SS-41F	SS-41G
					Date	e Collected :	12/13/2023	12/13/2023	12/13/2023	12/13/2023
			ID	EM R2 PLs 20)23	2022 IDEM	Lot 41	Lot 41	Lot 41	Lot 41
	Chemi	cal	Long Term		Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name	Name CASRN Residential Commercial Ex		Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
F	Arsenic 7440-38-2		10	30	900	5.90	NA	11	NA	NA
leta	Arsenic Lead	7439-92-1	400	800	1,000	270	NA	NA	NA	NA
	Mercury 7439-97-6 3.00 3.00 3.00			2.10	0.074	< 0.021	0.038	< 0.019		

					Lat	poratory ID :	23120443-008	23120443-009	23120443-020	23120443-021
					Customer	Sample ID :	SS-41H	SS-41I	SS-51	SS-52
					Date	e Collected :	12/13/2023	12/13/2023	12/13/2023	12/13/2023
_			ID	EM R2 PLs 20)23	2022 IDEM	Lot 41	Lot 41	Senior Housing	Senior Housing
	Chem	ical	Long Term		Short Term	RCG	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs	0-2-ft bgs
	Name	CASRN	Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg	mg/Kg	mg/Kg
a	Arsenic 7440-38-2		10	30	900	5.90	NA	NA	< 1.1	8.4
leta	Lead	7439-92-1	400	800	1,000	270	NA	NA	NA	NA
2	Mercury 7439-97-6 3.00 3.00 3.00			2.10	0.037	< 0.019	NA	NA		

					Lab	23120443-022	23120443-023	
					Customer	SS-53	SS-54	
	Date Collected :					12/13/2023	12/13/2023	
			ID	EM R2 PLs 20)23	2022 IDEM	Senior Housing	Senior Housing
	Chem	ical	Long Term		Short Term	RCG	0-2-ft bgs	0-2-ft bgs
	Name	CASRN	Residential	Commercial	Excavation	Soil MTG	mg/Kg	mg/Kg
a	Arsenic 7440-38-2 10 30			900	5.90	< 0.98	4.4	
			800	1,000	270	NA	NA	
2	Mercury	7439-97-6	3.00	3.00	3.00	2.10	NA	NA
La sur	- Delever emercies							

bgs = Below ground surface

NA = Not Analyzed

IDEM = Indiana Department of Environmental Management

Published Levels (PLs) are per Table 1 of IDEM's Risk-based Closure Guide (R2), as updated for 2023

All values are reported in milligrams per kilogram (mg/Kg)

Bolded and shaded results exceed IDEM R2 2023 PLs

Blue shaded values have detected results exceeding IDEM RCG Soil MTG 2022 levels

FSI

1301 Highland Street Hammond, IN 46320 Project No. 23.2128.2

	Sample ID	Date Collected	Lead	
	SS-21	11/02/23	2,600	
	SS-21A	12/13/23	71	
	SS-21B	12/13/23	270	
	SS-21C	12/13/23	406	
~	SS-21E	12/13/23	150	
Lot 21	SS-21F	12/13/23	5.45	
Ľ	SS-21G	12/13/23	5.70	
	SS-21H	12/13/23	116	
	SS-21I	12/13/23	24	
	SS-21J	12/13/23	5.75	
	C	alculated Average:	365.39	
	SS-22	11/02/23	20	
	SS-22A	12/13/23	13,900	
	SS-22B	12/14/23	52.70	
	SS-22C	12/14/23	310	
\sim	SS-22D	12/14/23	53.60	
-ot 22	SS-22E	12/14/23	452	
Ľ	SS-22F	12/14/23	21.80	
	SS-22G	12/14/23	83.90	
	SS-22H	12/14/23	290	
	SS-22I	12/14/23	151	
	Calculated Average: 1,533.5			
	IDEM R	400		
	IDEM Co	mmercial Soil PL:	800	
	IDEM E	xcavation Soil PL:	1,000	

Surface Soil Representative Concentrations - Lead

IDEM = Indiana Department of Environmental Management.

Published Levels (PLs) are per Table 1 of IDEM's Risk-based Closure Guide (R2), as updated for 2023.

All values are reported in milligrams per kilogram (mg/Kg).

Bolded and shaded results exceed IDEM R2 2023 PLs.

	UCL Statist	ics for Unce	ensored Full Data Sets	
Liner Colorted Ontions	1			
User Selected Options	ProUCL 5.2 1/4/2024 1:10			
•	ProUCL input_b.xls	J. TU PINI		
	OFF			
	95%			
	2000			
	2000			
	Sur	face Soil - A	rsenic - Lot 38	
		General S	Statistics	
Total	Number of Observations	10	Number of Distinct Observations	10
			Number of Missing Observations	0
	Minimum	0.55	Mean	12.27
	Maximum	49	Median	4.4
	SD	17.34	Std. Error of Mean	5.484
	Coefficient of Variation	1.414	Skewness	1.737
		Normal G	OF Test	
S	hapiro Wilk Test Statistic	0.671	Shapiro Wilk GOF Test	
	hapiro Wilk Critical Value	0.781	Data Not Normal at 1% Significance Level	
	Lilliefors Test Statistic	0.352	Lilliefors GOF Test	
	Lilliefors Test Statistic % Lilliefors Critical Value	0.352 0.304	Lilliefors GOF Test Data Not Normal at 1% Significance Level	
	% Lilliefors Critical Value	0.304		
1'	% Lilliefors Critical Value Data Not Ass	0.304 Normal at 19	Data Not Normal at 1% Significance Level % Significance Level hal Distribution	
1'	% Lilliefors Critical Value Data Not Ass ormal UCL	0.304 Normal at 19 Suming Norm	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness)	
1'	% Lilliefors Critical Value Data Not Ass	0.304 Normal at 19	Data Not Normal at 1% Significance Level % Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	24.5
1'	% Lilliefors Critical Value Data Not Ass ormal UCL	0.304 Normal at 19 Suming Norm	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness)	24.5 22.82
1'	% Lilliefors Critical Value Data Not Ass ormal UCL	0.304 Normal at 19 Suming Norm	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	
1'	% Lilliefors Critical Value Data Not Ass ormal UCL	0.304 Normal at 19 suming Norm 22.32	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	
1'	% Lilliefors Critical Value Data Not Ass ormal UCL 95% Student's-t UCL	0.304 Normal at 19 Suming Norm 22.32 Gamma G	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	22.82
1'	% Lilliefors Critical Value Data Not Ass ormal UCL 95% Student's-t UCL A-D Test Statistic	0.304 Normal at 19 Suming Norm 22.32 Gamma G 0.611	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	22.82
1'	% Lilliefors Critical Value Data Not Ass ormal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value	0.304 Normal at 19 Suming Norm 22.32 Gamma G 0.611 0.76	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	22.82
1'	% Lilliefors Critical Value Data Not Ass ormal UCL 95% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	22.82 e Level
1'	% Lilliefors Critical Value Data Not Ass ormal UCL 95% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277	Data Not Normal at 1% Significance Level % Significance Level hal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level	22.82 e Level
1'	% Lilliefors Critical Value Data Not Ass ormal UCL 95% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277 Gamma Dis Gamma S 0.718	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Statistics k star (bias corrected MLE)	22.82 e Level e Level 0.569
1'	% Lilliefors Critical Value Data Not Ass ormal UCL 95% Student's-t UCL 95% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	0.304 Normal at 19 Suming Norm 22.32 Gamma G 0.611 0.76 0.207 0.277 Gamma Dis Gamma S	Data Not Normal at 1% Significance Level % Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Statistics	22.82 e Level e Level
11	% Lilliefors Critical Value Data Not Data Not Ass ormal UCL 95% Student's-t UCL 95% Student's-t UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277 Gamma Dis Gamma Dis 17.08 14.36	Data Not Normal at 1% Significance Level % Significance Level ** al Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	22.82 e Level e Level 0.569 21.54 11.39
11	% Lilliefors Critical Value Data Not Data Not Ass prmal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE)	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277 Gamma Dis Gamma Dis 0.718 17.08	Data Not Normal at 1% Significance Level % Significance Level ** al Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	22.82 e Level e Level 0.569 21.54 11.39 16.25
11	% Lilliefors Critical Value Data Not Data Not Ass ormal UCL 95% Student's-t UCL 95% Student's-t UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277 Gamma Dis Gamma Dis 17.08 14.36	Data Not Normal at 1% Significance Level % Significance Level ** al Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	22.82 e Level e Level 0.569 21.54 11.39
11	% Lilliefors Critical Value Data Not Data Not Ass ormal UCL 95% Student's-t UCL 95% Student's-t UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277 Gamma Dis Gamma Dis 17.08 14.36	Data Not Normal at 1% Significance Level % Significance Level ** al Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	22.82 e Level e Level 0.569 21.54 11.39 16.25
11	% Lilliefors Critical Value Data Not I Ass ormal UCL 95% Student's-t UCL 95% Student's-t UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected)	0.304 Normal at 19 22.32 Gamma G 0.611 0.76 0.207 0.277 Gamma Dis Gamma Dis 17.08 14.36 12.27 0.0267	Data Not Normal at 1% Significance Level % Significance Level ** Significance Level ** Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	22.82 e Level e Level 0.569 21.54 11.39 16.25 4.827

	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.958	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.869	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	Lilliefors Test Statistic 0.129 Lilliefors Lognormal GOF Test		
10% Lilliefors Critical Value	10% Lilliefors Critical Value 0.241 Data appear Lognormal at 10% Significance Level		
Data appear	Lognormal	at 10% Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	-0.598	Mean of logged Data	1.66
Maximum of Logged Data	3.892	SD of logged Data	1.37
٨٥٥		ormal Distribution	
95% H-UCL	83.24	90% Chebyshev (MVUE) UCL	28.06
95% Chebyshev (MVUE) UCL	35.44	97.5% Chebyshev (MVUE) UCL	45.67
99% Chebyshev (MVUE) UCL	65.78		45.07
	00.70		
Nonparame	tric Distribu	tion Free UCL Statistics	
Data appea	r to follow a	Discernible Distribution	
Nonpa	ametric Dis	tribution Free UCLs	
95% CLT UCL	21.29	95% BCA Bootstrap UCL	24.85
95% Standard Bootstrap UCL	20.95	95% Bootstrap-t UCL	60.38
95% Hall's Bootstrap UCL	76.52	95% Percentile Bootstrap UCL	21.67
90% Chebyshev(Mean, Sd) UCL	28.72	95% Chebyshev(Mean, Sd) UCL	36.17
97.5% Chebyshev(Mean, Sd) UCL	46.51	99% Chebyshev(Mean, Sd) UCL	66.83
	Suggested	UCL to Use	
95% Adjusted Gamma UCL	33.98		
	33.90		
The calculated UCLs are based on assumpt	ions that th	e data were collected in a random and unbiased manner.	
		e data were collected in a random and unbiased manner. ollected from random locations.	
Please verify the c	lata were co		
Please verify the o	lata were co using judg	ollected from random locations.	
Please verify the o	lata were co using judg	ollected from random locations. mental or other non-random methods,	
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95%	lata were co using judg statistician UCL are pr	bllected from random locations. mental or other non-random methods, to correctly calculate UCLs. rovided to help the user to select the most appropriate 95% UCL.	
Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	lata were co using judg statistician UCL are pr data distrib	ollected from random locations. mental or other non-random methods, to correctly calculate UCLs.	

	sored Full Data Sets	ics for Uncens	UCL Statis	
			ations	User Selected Options
				Date/Time of Computation
		.40 FIVI		From File
			• =	Full Precision
				Confidence Coefficient
			ons 2000	Number of Bootstrap Operations
	rcury - Lot 41	ace Soil - Mer	Sur	
	atistics	General Sta		
9	Number of Distinct Observations	10	Total Number of Observations	Tota
0	Number of Missing Observations			
0.596	Mean	0.0095	Minimum	
0.033	Median	5.5	Maximum	
0.545	Std. Error of Mean	1.724	SD	
3.153	Skewness	2.893	Coefficient of Variation	
0.100		2.000		
		Normal GO		
	Shapiro Wilk GOF Test	0.393	Shapiro Wilk Test Statistic	
	Data Not Normal at 1% Significance Level	0.781	1% Shapiro Wilk Critical Value	1% 5
	Lilliefors GOF Test	0.482	Lilliefors Test Statistic	
	Data Not Normal at 1% Significance Level		1% Lilliefors Critical Value	
	Significance Level	Normal at 1%	Data Not	
	Distribution	uming Normal	^	
	95% UCLs (Adjusted for Skewness)		5% Normal UCL	05% N
	95% Adjusted CLT UCL (Chen-1995)	1.596		9070 N
2.074	95% Adjusted-CET UCE (Cheri-1995)	1.590	95% Student's-t UCL	
	OEV Medified t IOI (Johnson 1079)			
	95% Modified-t UCL (Johnson-1978)			
		Gamma GO		
		Gamma GO 1.793	A-D Test Statistic	
1.686	DF Test		A-D Test Statistic 5% A-D Critical Value	
2.074 1.686 el	OF Test Anderson-Darling Gamma GOF Test	1.793		
1.686 el	OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	1.793 0.824	5% A-D Critical Value	
1.680 el	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	1.793 0.824 0.364 0.29	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	
1.680 el	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level	1.793 0.824 0.364 0.29 a Distributed a	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	
el	OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level at 5% Significance Level	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn	
1.686 el el 0.258	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level at 5% Significance Level bttistics k star (bias corrected MLE)	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta 0.274	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE)	
1.686 el el 0.258 2.307	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level at 5% Significance Level at star (bias corrected MLE) Theta star (bias corrected MLE)	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta 0.274 2.177	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE)	
1.686 el el 0.258 2.307 5.167	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta 0.274 2.177 5.477	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE)	
1.686 el el 0.258 2.307 5.167 1.173	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level at 5% Significance Level at the star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta 0.274 2.177	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE)	
1.686 el 0.258 2.307 5.167 1.173 1.23	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta 0.274 2.177 5.477	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	
1.686 el 0.258 2.307 5.167 1.173 1.23	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level at 5% Significance Level at the star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta 0.274 2.177 5.477 0.596	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE)	
1.686 el el 0.258 2.307 5.167 1.173	DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level at 5% Significance Level atistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	1.793 0.824 0.364 0.29 a Distributed a Gamma Sta 0.274 2.177 5.477 0.596	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	Adju

	Lognormal GOF	Test	
Shapiro Wilk Test Statistic	0.794	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.869	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.24	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level	
Data appear Approx	imate Lognormal	at 10% Significance Level	
	Lognormal Stat	istics	
Minimum of Logged Data	-4.656	Mean of logged Data	-3.073
Maximum of Logged Data	1.705	SD of logged Data	1.97
		Distribution	
95% H-UCL	11.04	90% Chebyshev (MVUE) UCL	0.63
95% Chebyshev (MVUE) UCL	0.828	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	1.09
99% Chebyshev (MVUE) UCL	1.612	97.5% Chebyshev (MVOE) OCL	1.09
Nonparame	tric Distribution F	ree UCL Statistics	
Data appea	r to follow a Disce	ernible Distribution	
Nonpar	ametric Distributi	on Free UCLs	
95% CLT UCL	1.493	95% BCA Bootstrap UCL	2.24
95% Standard Bootstrap UCL	1.446	95% Bootstrap-t UCL	48.8
95% Hall's Bootstrap UCL	24.55	95% Percentile Bootstrap UCL	1.67
90% Chebyshev(Mean, Sd) UCL	2.232	95% Chebyshev(Mean, Sd) UCL	2.97
97.5% Chebyshev(Mean, Sd) UCL	4.002	99% Chebyshev(Mean, Sd) UCL	6.02
	4.002 Suggested UCL		6.02
			6.02
95% Student's-t UCL	Suggested UCL 1	to Use	6.02
95% Student's-t UCL The calculated UCLs are based on assumpti	Suggested UCL 1 1.596		6.02
95% Student's-t UCL The calculated UCLs are based on assumpti Please verify the d	Suggested UCL 1 1.596 ions that the data ata were collecte	to Use were collected in a random and unbiased manner.	6.02
95% Student's-t UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected	Suggested UCL f 1.596 ions that the data ata were collecte using judgmenta	to Use were collected in a random and unbiased manner. d from random locations.	6.02
95% Student's-t UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s	Suggested UCL f 1.596 ions that the data lata were collecte using judgmenta statistician to con	to Use were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs.	6.02
95% Student's-t UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95%	Suggested UCL to 1.596 ions that the data ata were collecter using judgmentar statistician to control UCL are provided	to Use were collected in a random and unbiased manner. d from random locations. I or other non-random methods,	6.02

	nsored Full Data Sets	ics for Unce			
			User Selected Options		
		0·19 PM	Date/Time of Computation ProUCL 5.2 1/4/2024 1:1		
		2.13110	From File ProUCL input_d.xls		
			Full Precision OFF		
			Confidence Coefficient 95%		
			lumber of Bootstrap Operations 2000		
	r Housing - Arsenic	Soil - Senio	Surface		
	Statistics	General			
ns 9	Number of Distinct Observations	10	Total Number of Observations		
ns 0	Number of Missing Observations				
an 6.11	Mean	0.49	Minimum		
an 4.55	Median	23	Maximum		
an 2.04	Std. Error of Mean	6.462	SD		
ss 2.26	Skewness	1.057	Coefficient of Variation		
	OF Test	Normal G			
	Shapiro Wilk GOF Test	0.741	Shapiro Wilk Test Statistic		
	Data Not Normal at 1% Significance Level	0.781	1% Shapiro Wilk Critical Value		
	Lilliefors GOF Test	0.262	Lilliefors Test Statistic		
Data appear Normal at 1% Significance Level		0.304			
I	Data appear Normar at 1% Significance Lever	0.304	1% Lilliefors Critical Value		
	mal at 1% Significance Level				
		oximate Nor	Data appear App		
I	mal at 1% Significance Level	oximate Nor	Data appear App		
	mal at 1% Significance Level	oximate Nor	Data appear App As		
5) 11.0	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness)	oximate Nor	Data appear App Ase 95% Normal UCL		
5) 11.0	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	oximate Nor	Data appear App Ase 95% Normal UCL		
5) 11.0	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	oximate Nor	Data appear App Ase 95% Normal UCL		
5) 11.0	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	suming Norm 9.86	Data appear App Ase 95% Normal UCL		
5) 11.0 8) 10.1	mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test	9.86 Gamma C	Data appear App As: 95% Normal UCL 95% Student's-t UCL		
5) 11.0 8) 10.1	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	9.86 Gamma C	Data appear App As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic		
5) 11.0 8) 10.1 sance Leve	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	9.86 Gamma C 0.401 0.746	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value		
5) 11.0 8) 10.1 sance Leve	mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	Suming Norm 9.86 Gamma C 0.401 0.746 0.198 0.273	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value		
5) 11.0 8) 10.1 sance Leve	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level	Suming Norm 9.86 Gamma C 0.401 0.746 0.198 0.273	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value		
5) 11.0 8) 10.1 ance Leve	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level	Suming Norm 9.86 Gamma C 0.401 0.746 0.198 0.273 Gamma Dis	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value		
5) 11.0 8) 10.1 ance Leve ance Leve E) 0.85	mal at 1% Significance Level Mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics	9.86 Gamma C 0.401 0.746 0.198 0.273 Gamma Dis Gamma S	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear		
5) 11.0 8) 10.1 cance Leve cance Leve E) 0.85 E) 7.18	mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Statistics k star (bias corrected MLE)	Suming Norm 9.86 Gamma C 0.401 0.746 0.198 0.273 Gamma Dis Gamma S 1.121	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE)		
5) 11.0 8) 10.1 ance Leve cance Leve <tr< td=""><td>mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance k star (bias corrected MLE) Theta star (bias corrected MLE)</td><td>Gamma C 0.401 0.746 0.198 0.273 Gamma Dis Gamma S 1.121 5.456</td><td>As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE)</td></tr<>	mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance k star (bias corrected MLE) Theta star (bias corrected MLE)	Gamma C 0.401 0.746 0.198 0.273 Gamma Dis Gamma S 1.121 5.456	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE)		
5) 11.0 8) 10.1 eance Leve cance Leve E) 0.85 E) 7.18 d) 17.0 d) 6.62	mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE)	Gamma C 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41	Asa 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)		
5) 11.0 8) 10.1 ance Leve cance Leve <tr< td=""><td>mal at 1% Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)</td><td>Gamma C 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41</td><td>Asa 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)</td></tr<>	mal at 1% Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	Gamma C 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41	Asa 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)		
5) 11.0 8) 10.1 ance Leve cance Leve <tr< td=""><td>mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) ROF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value</td><td>Gamma C 9.86 9.86 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41 6.114 0.0267</td><td>As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance</td></tr<>	mal at 1% Significance Level nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) ROF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	Gamma C 9.86 9.86 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41 6.114 0.0267	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance		
5) 11.0 8) 10.1 ance Leve cance Leve cance Leve Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" <td <="" colspan="2" t<="" td=""><td>mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kributed at 5% Significance Level Statistics K star (bias corrected MLE) MLE sd (bias corrected MLE) MLE Sd (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)</td><td>Gamma C 9.86 9.86 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41 6.114 0.0267</td><td>As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance</td></td>	<td>mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kributed at 5% Significance Level Statistics K star (bias corrected MLE) MLE sd (bias corrected MLE) MLE Sd (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)</td> <td>Gamma C 9.86 9.86 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41 6.114 0.0267</td> <td>As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance</td>		mal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kributed at 5% Significance Level Statistics K star (bias corrected MLE) MLE sd (bias corrected MLE) MLE Sd (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	Gamma C 9.86 9.86 0.401 0.746 0.198 0.273 Gamma Dis 1.121 5.456 22.41 6.114 0.0267	As: 95% Normal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance

	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.9	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.869	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.26	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.241	Data Not Lognormal at 10% Significance Level	
Data appear Approx	kimate Logne	ormal at 10% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	-0.713	Mean of logged Data	1.302
Maximum of Logged Data	3.135	SD of logged Data	1.188
		rmal Distribution	147
95% H-UCL	29.77	90% Chebyshev (MVUE) UCL	14.7
95% Chebyshev (MVUE) UCL	18.32	97.5% Chebyshev (MVUE) UCL	23.34
99% Chebyshev (MVUE) UCL	33.2		
Nonparame	tric Distribut	tion Free UCL Statistics	
		Discernible Distribution	
Nonpar	ametric Dist	ribution Free UCLs	
95% CLT UCL	9.475	95% BCA Bootstrap UCL	10.71
95% Standard Bootstrap UCL	9.267	95% Bootstrap-t UCL	13.39
95% Hall's Bootstrap UCL	24.86	95% Percentile Bootstrap UCL	9.558
90% Chebyshev(Mean, Sd) UCL	12.24	95% Chebyshev(Mean, Sd) UCL	15.02
97.5% Chebyshev(Mean, Sd) UCL	18.88	99% Chebyshev(Mean, Sd) UCL	26.45
		UCL to Use	
95% Student's-t UCL	9.86		
The calculated LICLs are based on assumpt	ione that the	e data were collected in a random and unbiased manner.	
		llected from random locations.	
		nental or other non-random methods,	
		o correctly calculate UCLs.	
		· ·	
When a data set follows an app	proximate dis	tribution passing only one of the GOF tests,	
it is suggested to use a UCL bas	ed upon a di	stribution passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95%		ovided to help the user to select the most appropriate 95% LICL	
		ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	

Appendix C

Surface Soil Sample Log Form

SURFACE SOIL SAMPLE LOG FORM

Client:	Hammond Redevelopment Commission City of Hammond 5925 Calumet Avenue, Suite 315
	Hammond, IN 46320

Project: Former Memorial Park 1301 Highland Street Hammond, IN 46320

Project No. 23.2128.2

Date(s) Sampled: 12/13/2023 and 12/14/2023

SAMPLE ID	MATRIX	LOCATION and DESCRIPTION
SS-21A	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Fill material
SS-21B	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Fill material
SS-21C	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Fill material
SS-21E	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand
SS-21F	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-21G	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-21H	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Fill material
SS-21I	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-21J	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-22A	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Fill material
SS-22B	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to $4^{\circ}C \pm 2^{\circ}$ Silt
SS-22C	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand
SS-22D	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to $4^\circ C \ \pm 2^\circ$ Sand
SS-22E	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Trace fill material underlain with silty sand
SS-22F	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand

AMERECO, INC.

Consulting D Engineering D Project Management 54 Michigan Avenue Valparaiso, IN 46383 (219) 531-0531 Fax: (219) 464-9166

SAMPLE ID	MATRIX	LOCATION and DESCRIPTION
SS-22G	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to $4^\circ C \ \pm 2^\circ$ Silty sand
SS-22H	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to $4^\circ C \ \pm 2^\circ$ Silty sand
SS-22I	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand
SS-38A	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-50A	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-38B	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-38C	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand
SS-38D	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-38E	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-38F	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-38G	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-38H	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-38I	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-41A	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-41B	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-41C	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand
SS-41D	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-41E	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silt
SS-41F	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand
SS-41G	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Sand
SS-41H	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand

AMERECO, INC.

Consulting D Engineering D Project Management 54 Michigan Avenue Valparaiso, IN 46383 (219) 531-0531 Fax: (219) 464-9166

SAMPLE ID	MATRIX	LOCATION and DESCRIPTION
SS-41I	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to $4^{\circ}C \pm 2^{\circ}$ Sand
SS-51	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to $4^{\circ}C \pm 2^{\circ}$ Sand
SS-52	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to $4^{\circ}C \pm 2^{\circ}$ Silty sand
SS-53	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Silty sand
SS-54	Soil	Soil Sample Collected From 0-2-feet bgs, Cool to 4°C ±2° Fill material to approximately 0-1.5-feet bgs underlain by silty sand

bgs = below ground surface

Analyzed by: <u>Sterling Labs (arsenic and mercury) and Accurate Analytical Testing (lead)</u>

Ref Number: Sterling 23120443 and AAT 985027

Sampled by: Ross Yeater

Appendix D

Laboratory Reports

December 23, 2023

Amereco Inc. 54 Michigan Avenue Valparaiso, IN 46383 Telephone: (219) 531-0531 Fax: (219) 464-9166

Analytical Report for Work Order: 23120443 Revision 0

RE: 23.2128.2, Former Memorial Park, Hammond, IN.

Dear Amereco Inc.:

Sterling Labs received 23 samples for the referenced project on 12/15/2023 10:05:00 AM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / TNI standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Craig Chawla Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples as received and tested. Sterling labs is not responsible for customer provided information found in the report that is used to calculate final results. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, Sterling Labs will be under no obligation to support, defend or discuss the analytical report.

Customer:Amereco Inc.Project:23.2128.2, Former Memorial Park, Hammond, IN.Work Order:23120443 Revision 0

Work Order Sample Summary

Lab Sample ID	Customer Sample ID	Tag Number	Collection Date	Date Received
23120443-001A S	SS-41A		12/13/2023 10:35:00 AM	12/15/2023
23120443-002A S	SS-41B		12/13/2023 10:46:00 AM	12/15/2023
23120443-003A S	SS-41C		12/13/2023 10:55:00 AM	12/15/2023
23120443-004A S	SS-41D		12/13/2023 11:18:00 AM	12/15/2023
23120443-005A S	SS-41E		12/13/2023 12:18:00 PM	12/15/2023
23120443-006A S	SS-41F		12/13/2023 11:44:00 AM	12/15/2023
23120443-007A S	SS-41G		12/13/2023 11:58:00 AM	12/15/2023
23120443-008A S	SS-41H		12/13/2023 11:34:00 AM	12/15/2023
23120443-009A S	SS-41I		12/13/2023 12:10:00 PM	12/15/2023
23120443-010A S	SS-38A		12/13/2023 1:00:00 PM	12/15/2023
23120443-011A S	SS-50A		12/13/2023 12:41:00 PM	12/15/2023
23120443-012A S	SS-38B		12/13/2023 12:54:00 PM	12/15/2023
23120443-013A S	SS-38C		12/13/2023 12:30:00 PM	12/15/2023
23120443-014A S	SS-38D		12/13/2023 1:28:00 PM	12/15/2023
23120443-015A S	SS-38E		12/13/2023 1:21:00 PM	12/15/2023
23120443-016A S	SS-38F		12/13/2023 1:10:00 PM	12/15/2023
23120443-017A S	SS-38G		12/13/2023 1:46:00 PM	12/15/2023
23120443-018A S	SS-38H		12/13/2023 1:36:00 PM	12/15/2023
23120443-019A S	SS-38I		12/13/2023 1:54:00 PM	12/15/2023
23120443-020A S	SS-51		12/13/2023 3:39:00 PM	12/15/2023
23120443-021A S	SS-52		12/13/2023 3:57:00 PM	12/15/2023
23120443-022A S	SS-53		12/13/2023 4:04:00 PM	12/15/2023
23120443-023A S	SS-54		12/13/2023 3:49:00 PM	12/15/2023

Date Reported: Date Printed:	December 23, 2023 December 23, 2023					Analytic	al Results
Customer: Project:	Amereco Inc. 23.2128.2, Former Mem	orial Park, Ham	mond, I	N. V	Vork Ord	ler: 231204	43 Revision 0
Lab ID:	23120443-001			Colle	ection Da	nte: 12/13/20	023 10:35:00 AM
Customer Sample	e ID: SS-41A				Mat	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747 ⁻	IB		Prep	Date: 12/22/	2023 Analyst: MDS
Mercury		0.24	0.018	r	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 10.9	0.2	*	Prep wt%	Date: 12/21/ 1	2023 Analyst: EPD 12/22/2023
Lab ID:	23120443-002			Colle	ection Da	nte: 12/13/20	023 10:46:00 AM
Customer Sample	e ID: SS-41B				Mat	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747 [,]	1B		Prep	Date: 12/22/	2023 Analyst: MDS
Mercury		ND	0.023	r	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 13.8	0.2	*	Prep wt%	Date: 12/21/ 1	2023 Analyst: EPD 12/22/2023
Lab ID:	23120443-003			Colle	ection Da	nte: 12/13/20	023 10:55:00 AM
Customer Sample	e ID: SS-41C				Mat	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747 ²	1B		Prep	Date: 12/22/	2023 Analyst: MDS
Mercury		0.030	0.022	r	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 15.0	0.2	*	Prep wt%	Date: 12/21/ 1	2023 Analyst: EPD 12/22/2023

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

	December 23, 2023 December 23, 2023					Analytical 1	Results
Customer:	Amereco Inc.						
Project:	23.2128.2, Former Memo	orial Park, Ham	mond, I	N. V	Vork Ord	ler: 23120443	Revision 0
Lab ID:	23120443-004			Colle	ection Da	nte: 12/13/2023	11:18:00 AM
Customer Sample I	D: SS-41D				Matı	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747	1B		Prep	Date: 12/22/202 3	3 Analyst: MDS
Mercury		0.074	0.018	n	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 11.6	0.2	*	Prep wt%	Date: 12/21/202 1	3 Analyst: EPD 12/22/2023
Lab ID:	23120443-005			Colle	ection Da	nte: 12/13/2023	12:18:00 PM
Customer Sample I	D: SS-41E				Matı	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS		SW6020	0A (SW	/3050B)	Prep	Date: 12/22/202	3 Analyst: MDS
Arsenic		11	1.1	n	ng/Kg-dry	10	12/22/2023
Mercury IEPA ELAP 100445		SW747 [,]	1B		Prep	Date: 12/22/202	3 Analyst: MDS
Mercury		ND	0.021	n	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 14.2	0.2	*	Prep wt%	Date: 12/21/202 1	3 Analyst: EPD 12/22/2023
Lab ID:	23120443-006			Colle	ection Da	ate: 12/13/2023	11:44:00 AM
Customer Sample I	D: SS-41F				Matı	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747	1B		Prep	Date: 12/22/202	3 Analyst: MDS
Mercury		0.038	0.022	n	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 20.6	0.2	*	Prep wt%	Date: 12/21/202	3 Analyst: EPD 12/22/2023

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

Date Reported: Date Printed:	December 23, 2023 December 23, 2023					Analytic	al Results
Customer: Project:	Amereco Inc. 23.2128.2, Former Mem	oorial Park, Ham	mond, I	N. V	Vork Ord	ler: 231204	43 Revision 0
Lab ID:	23120443-007			Colle	ection Da	nte: 12/13/20	023 11:58:00 AM
Customer Sample	e ID: SS-41G				Mat	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747 [,]	1B		Prep	Date: 12/22/	2023 Analyst: MDS
Mercury		ND	0.019	r	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 11.0	0.2	*	Prep wt%	Date: 12/21/ 1	2023 Analyst: EPD 12/22/2023
Lab ID:	23120443-008			Colle	ection Da	nte: 12/13/20	023 11:34:00 AM
Customer Sample	e ID: SS-41H				Mat	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747 [,]	1B		Prep	Date: 12/22/	2023 Analyst: MDS
Mercury		0.037	0.018	r	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 8.9	0.2	*	Prep wt%	Date: 12/21/ 1	2023 Analyst: EPD 12/22/2023
Lab ID:	23120443-009			Colle	ection Dຄ	nte: 12/13/20	023 12:10:00 PM
Customer Sample	e ID: SS-411				Mat	rix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury IEPA ELAP 100445		SW747 [,]	1B		Prep	Date: 12/22/	2023 Analyst: MDS
Mercury		ND	0.019	r	ng/Kg-dry	1	12/22/2023
Percent Moisture Percent Moisture		D2974 8.2	0.2	*	Prep wt%	Date: 12/21/ 1	2023 Analyst: EPD 12/22/2023

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

_

Date Reported: Date Printed:	December 23, 2023 December 23, 2023					Analytical	Results
Customer:	Amereco Inc.						
Project:	23.2128.2, Former Mem	orial Park, Hamn	nond, I	N. V	Vork Ord	ler: 23120443	Revision 0
Lab ID:	23120443-010			Colle	ection Da	te: 12/13/2023	1:00:00 PM
Customer Sample	e ID: SS-38A				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	3	SW6020/	A (SW	/3050B)	Prep	Date: 12/22/202	23 Analyst: MDS
Arsenic		3.4	1.1	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture		D2974 9.7	0.2	*	Prep wt%	Date: 12/21/202 1	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-011			Coll	ection Da	te: 12/13/2023	12:41:00 PM
Customer Sample	e ID: SS-50A				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	6	SW6020/	A (SW	/3050B)	Prep	Date: 12/22/202	23 Analyst: MDS
Arsenic		3.1	1.0	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	,	D2974 14.0	0.2	*	Prep wt%	Date: 12/21/202 1	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-012			Coll	ection Da	te: 12/13/2023	12:54:00 PM
Customer Sample	e ID: SS-38B				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	3	SW6020/	A (SW	/3050B)	Prep	Date: 12/22/202	23 Analyst: MDS
Arsenic		3.2	1.0	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	,	D2974 7.3	0.2	*	Prep wt%	Date: 12/21/202 1	23 Analyst: EPD 12/22/2023

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

Date Reported: Date Printed:	December 23, 2023 December 23, 2023					Analytical	Results
Customer:	Amereco Inc.						
Project:	23.2128.2, Former Mem	orial Park, Hamn	nond, I	N. V	Vork Ord	er: 23120443	Revision 0
Lab ID:	23120443-013			Coll	ection Da	te: 12/13/2023	3 12:30:00 PM
Customer Sample	e ID: SS-38C				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS IEPA ELAP 100445	3	SW6020	A (SW	/3050B)	Prep	Date: 12/22/20 2	23 Analyst: MDS
Arsenic		7.1	1.2	r	mg/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	•	D2974 20.7	0.2	*	Prep wt%	Date: 12/21/20 2 1	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-014			Coll	ection Da	te: 12/13/2023	3 1:28:00 PM
Customer Sample	e ID: SS-38D				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	5	SW6020	A (SW	/3050B)	Prep	Date: 12/22/20 2	23 Analyst: MDS
Arsenic		1.7	1.0	r	mg/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	2	D2974 5.6	0.2	*	Prep wt%	Date: 12/21/20 2 1	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-015			Coll	ection Da	te: 12/13/2023	3 1:21:00 PM
Customer Sample	e ID: SS-38E				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	3	SW6020	A (SW	/3050B)	Prep	Date: 12/22/20 2	23 Analyst: MDS
Arsenic		2.3	0.95	r	mg/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	•	D2974 6.7	0.2	*	Prep wt%	Date: 12/21/20 2 1	23 Analyst: EPD 12/22/2023

Date Reported: Date Printed:	December 23, 2023 December 23, 2023					Analytical	l Results
Customer: Project:	Amereco Inc. 23.2128.2, Former Mem	orial Park, Hamn	nond. I	N. V	Vork Ord	ler: 23120443	Revision 0
•	·	,,	,-				
Lab ID:	23120443-016			Colle		te: 12/13/202 rix: Soil	3 1:10:00 PM
Customer Sample	е Ш: 55-36г						
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	3	SW6020	A (SW	3050B)	Prep	Date: 12/22/20	23 Analyst: MDS
Arsenic		49	1.2	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	1	D2974 18.1	0.2	*	Prep wt%	Date: 12/21/20 1	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-017			Colle	ection Da	te: 12/13/202	3 1:46:00 PM
Customer Sample	e ID: SS-38G				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	6	SW6020	A (SW	3050B)	Prep	Date: 12/22/20	23 Analyst: MDS
Arsenic		10	1.1	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture		D2974 14.5	0.2	*	Prep wt%	Date: 12/21/20 1	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-018			Colle	ection Da	te: 12/13/202	3 1:36:00 PM
Customer Sample	e ID: SS-38H				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	3	SW6020/	A (SW	3050B)	Prep	Date: 12/22/20	23 Analyst: MDS
Arsenic		5.4	1.1	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture		D2974 11.6	0.2	*	Prep wt%	Date: 12/21/20 1	23 Analyst: EPD 12/22/2023

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

Date Reported: Date Printed:	December 23, 2023 December 23, 2023					Analytical	Results
Customer:	Amereco Inc.					22122442	D
Project:	23.2128.2, Former Mem	iorial Park, Hamn	nond, I	N. V	Vork Ord	er: 23120443	Revision 0
Lab ID:	23120443-019			Coll	ection Da	te: 12/13/2023	3 1:54:00 PM
Customer Sample	e ID: SS-38I				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS IEPA ELAP 100445	3	SW6020	A (SW	/3050B)	Prep	Date: 12/22/20	23 Analyst: MDS
Arsenic		ND	1.1	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	,	D2974 12.3	0.2	*	Prep wt%	Date: 12/21/20 1	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-020			Colle	ection Da	te: 12/13/2023	3 3:39:00 PM
Customer Sample	e ID: SS-51				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	5	SW6020	A (SW	/3050B)	Prep	Date: 12/22/20	23 Analyst: MDS
Arsenic		ND	1.1	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture		D2974 16.9	0.2	*	Prep wt%	Date: 12/21/20	23 Analyst: EPD 12/22/2023
Lab ID:	23120443-021			Colle	ection Da	te: 12/13/2023	3 3:57:00 PM
Customer Sample	e ID: SS-52				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS IEPA ELAP 100445	3	SW6020	A (SW	/3050B)	Prep	Date: 12/22/20	23 Analyst: MDS
Arsenic		8.4	1.1	r	ng/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture		D2974 20.2	0.2	*	Prep wt%	Date: 12/21/20 1	23 Analyst: EPD 12/22/2023

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

Date Reported: Date Printed:	December 23, 2023 December 23, 2023					Analyti	cal Results
Customer: Project:	Amereco Inc. 23.2128.2, Former Mem	orial Park, Ham	mond, l	N.	Work Ord	ler: 23120	0443 Revision 0
Lab ID: Customer Sampl	23120443-022 e ID: SS-53			Coll		te: 12/13/ •ix: Soil	2023 4:04:00 PM
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS		SW6020	A (SW	/3050B)	Prep	Date: 12/2	2/2023 Analyst: MDS
Arsenic		ND	0.98		mg/Kg-dry	10	12/22/2023
Percent Moisture)	D2974 14.8	0.2	*	Prep wt%	Date: 12/2 1	1/2023 Analyst: EPD 12/22/2023
Lab ID:	23120443-023			Coll	lection Da	te: 12/13/	2023 3:49:00 PM
Customer Sampl	e ID: SS-54				Matı	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS		SW6020	A (SW	/3050B)	Prep	Date: 12/2	2/2023 Analyst: MDS
Arsenic		4.4	1.1		mg/Kg-dry	10	12/22/2023
Percent Moisture Percent Moisture	3	D2974 17.3	0.2	*	Prep wt%	Date: 12/2 1	1/2023 Analyst: EPD 12/22/2023

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quantitation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

STAT Analysis Corporation 2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com CHAIN OF CUSTODY RECO	go, Illinois 60612 Phone: (nalysis.com	2) 733-0551 Fax HAIN OF CUS	312) 733-0551 Fax: (312) 733-2386 CHAIN OF CUSTODY RECORD N ⁰ : 93	52901 Page: 1 of 2
Company: Amereco Engineering				
Project Number: 23.2(28.2	Client Tracki	racking No.:		, ,
Project Name: Former Memorial Park	,			P.O. No.:
Project Location: Hammond, TN				
Sampler(s): Ross Yeaker				1.626121
Report To: labresolts Camercoeng, Com		3(Turn Around Time (Days):
	Г			$1 \ 2 \ 3 \ 4 \ \overline{S-7} \ 10$
QC Level: 1 2 × 3 4	e-mail:		ว)V	Results Needed:
Client Sample Number/Description: Date Taken	hken Time Matrix Comp. Grab	Preserv.	Merse	12 /22 /2023 am/pm
SS-411A (z-13.23	23 10:35 Soil X	-	×	
SS-4/R	10:46		×	
SS-41C	10:55		×	
SS-41D	81:11			FOU
55-41E	8):21		X X	002
55-41 F	トー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		×	- Unio
SS-4/6	11(:58			63
SS-41H	11:34		X	POR
22-41 <u>T</u>	0):21		×	000
55-58A	(3:00		×	010
25-50A	14:21		×	011
>>-58 5	HS:21		*	012
	02:20		×	03
082-00	(3:26		×	6M
25-50E	13:21		×	05
	(3:10		×	010
	15:46		 X.	L10
	15:56		×	0NA
72-22 70-22	13:54		×	0(9
T 15-CC	T T 162:511	7		010
Relinquished by: (Signature)	Date/Time:	15/13/10:05	Comments:	Laboratory Work Order No.:
Received by: (Signature)	the Date/Time:/2	115/23 10	20	
Relinquished by: (Signature)	Date/Time:	~	1	(1107)
Received by: (Signature)	Date/Time:			Received on Ice: Yes No
Relinquished by: (Signature)	Date/Time:		Preservation Code: $A = None$ $B = HNO_3$ $C = NaOH$	
Received by: (Signature)	Date/Time:		$D=H_2SO_4 E=HCl F=5035/EnCore G=Other$	remperature: 4.7 °C

STAT Analysis 2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com CHAIN OF CUSTODY RECO	2 Phone: (312) 733-0551 Fax: (312) 733-2386 CHAIN OF CUSTODY RECORD	2) 733-2386 DY RECORD N ² : 936402	2 Page 2 of 2
Company: Amereco Engineering			lote No.:
	Client Tracking No.:		
Project Name: Forner Memorial Park			P.O. No.:
MWB			
Sampler(s): Doss Yeater			12(423.1
Its admerecoency.com Phone:	219.531.0531		Turn Around Time (Days):
			$1 \ 2 \ 3 \ 4 \ \overline{(5-7)} \ 10$
QC Level: $1 2 \times 3 4$ e-mail:		v}c	Results Needed:
Client Sample Number/Description: Date Taken Taken Taken	Matrix Grab Teserv. Containers	25. f	8
15:57 12/202 5.			Additional Information: Lab No.:
1012			001
	 (A		00e
			2
C			
ure) / Ze L	152/51	nents:	Laboratory Work Order No.:
A LXX	Date/Time: 12/15/23' 1005		20000000
Relinquished by: (Signature)	Date/Time:		<11 0 3 1 5 7
Received by: (Signature) D	Date/Time:		Received on Ice: Yes No
Relinquished by: (Signature) D	Date/Time: Preserv	Preservation Code: $A = None$ $B = HNO_3$ $C = NaOH$	
Received by: (Signature) D	Date/Time: D = H	$D=H_2SO_4 E=HCl F=5035/EnCore G=Other$	1 emperature: 4.7 °C

Sample Receipt Checklist

Customer: AMERECO		Date and Time I	Received:	12/15/2023 10:05:00 AM
Work Order Number 23120443		Received by:	ЈМН	
Checklist completed by: 12 - Signature Date	15-2023	Reviewed by:	Initials	12/15/2023 Date
Matrix: Carrier name	Client Delivered			
Shipping container/cooler in good condition?	Yes 🗸	No	ot Present	
Custody seals intact on shipping container/cooler?	Yes	No No	ot Present 🔽	
Custody seals intact on sample bottles?	Yes	No 🗌 🛛 No	ot Present 🗹	
Chain of custody present?	Yes 🗸	No		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels/containers?	Yes 🗸	No		
Samples in proper container/bottle?	Yes 🗸	No		
Sample containers intact?	Yes 🗸	Νο		
Sufficient sample volume for indicated test?	Yes 🗸	No		
All samples received within holding time?	Yes 🗸	Νο		
Container or Temp Blank temperature in compliance?	Yes 🗸	Νο	Temperatu	re 4.7 °C
Water - VOA vials have zero headspace? No VOA vials subn	nitted	Yes	No 🔳	
Water - Samples pH checked?	Yes	No 📃 C	hecked by:	
Water - Samples properly preserved?	Yes		I Adjusted?	
Any No response must be detailed in the comments section below.	· · · · · · · · · · · · · · · · · · ·			
Comments:				
Customer / Date contacted: Person Date contacted: contacted: Response:		Contacte	d by:	

Certificate of Analysis: Lead In Soil by EPA SW-846 7000B and 3050B Method*

Client :	Amereco Engineering		AAT Project : 983090
	54 Michigan Avenue		Sampling Date : 12/13/2023
	Valparaiso, IN 46383		Date Received : 12/15/2023
Attn :	Zach Heine	Email: labresults@amerecoeng.com	Date Analyzed : 12/19/2023
Phone :	219-531-0531	Fax :	Date Reported : 12/19/2023
Client Pro	oject : 23.2128.2		

Project Location: 1301 HIGHLAND STREET HAMMOND

Lab Sample ID	Client Code	Sample Description	Results Lead μg/g (PPM)	Calculated RL µg/g *
9025487	SS-21A		71.3	9.19
9025488	SS-21B		270	10.8
9025489	SS-21C		406	9.75
9025490	SS-22A		13900	11.6
9025491	SS-21E		150	10.0
9025492	SS-21F		<10.9	10.9
9025493	SS-21G		<11.4	11.4
9025494	SS-21H		116	8.91
9025495	SS-211		23.7	9.60
9025496	SS-21J		<11.5	11.5

Analyst Signature

Bron Marial

Bryan Maxwell

*RL= Reporting Limit * For true values assume (3) significant figures. The method and batch QC are acceptable unless otherwise stated. Current EPA/HUD Interim Standard for soil samples are: 400 PPM (parts per million) for play area's, 1200 PPM for building Perimeters and 1000 PPM for California Building Perimeters. AAT internal sop S204. The laboratory operates in accord with ISO 17025 guidelines and holds limited scopes of accreditation under AIHA-LAP and NY State DOH ELAP programs. These results are submitted pursuant to AAT LLC current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. Analytical results relate to the samples as received by the lab. AAT will not assume any liability or responsibility for the manner in which the results are used or interpreted. Reproduction of this document other than in its entirety is not permitted. AAT does not blank correct reported values. Sample data apply only to items analyzed. Samples are stored for 15 days following report date. *= Validated modified method

AIHA LAP- Lab ID #100986, NY State DOH ELAP -Lab ID #11864, State of Ohio- Lab ID # 10042

Amereco Engineering

To :

30105 Beverly Road Romulus, MI 48174 Ph: 734-629-8161; Fax: 734-629-8431

 AAT Project :
 983090

 Client Project :
 23.2128.2

 Date Reported :
 12/19/2023

54 Michigan Avenue Valparaiso, IN 46383 Attn : Zach Heine Email : labresults@amerecoeng.com Phone : 219-531-0531

Project Location : 1301 HIGHLAND STREET HAMMOND

Sample	Client Code	Analysis Requested	Completed	Analyst
9025487	SS-21A	Lead Soil	12/19/2023	Bryan Maxwell
9025488	SS-21B	Lead Soil	12/19/2023	Bryan Maxwell
9025489	SS-21C	Lead Soil	12/19/2023	Bryan Maxwell
9025490	SS-22A	Lead Soil	12/19/2023	Bryan Maxwell
9025491	SS-21E	Lead Soil	12/19/2023	Bryan Maxwell
9025492	SS-21F	Lead Soil	12/19/2023	Bryan Maxwell
9025493	SS-21G	Lead Soil	12/19/2023	Bryan Maxwell
9025494	SS-21H	Lead Soil	12/19/2023	Bryan Maxwell
9025495	SS-211	Lead Soil	12/19/2023	Bryan Maxwell
9025496	SS-21J	Lead Soil	12/19/2023	Bryan Maxwell

Elype B Me

Reviewed By

Elyse Bidle Quality Assurance Coordinator

This report is intended for use solely by the individual or entity to which it is addressed. It may contain information that is privileged, confidential and otherwise exempt by law from disclosure. If the reader of this information is not the intended recipient or an employee of its intended recipient, you are herewith notified that any dissemination, distribution or copying of this information is strictly prohibited. If you have received this information in error, please notify AAT immediately. Thank you.

CONTACT INFORMATION Zack Heine Phone:(219)-531-0531 Cell: Fax: Ernail:labresults@amerecoeng.com	Request Turnaround time (please check one) SAME DAY) 24 Hour () 48 Hour () 3 days (X)	Sumpler CLIENT COMMENTS Risk Assessor: R.Yeater	Samples shipped	IPLE CONDI Y	CONTAINERS LABELED Y N LAB REMARKS	LAB PROJECT DSPCKU	NUMBER TIME TIME AM PM
submitting company Amereco Engineering 54 Michigan Avenue Valparaiso, IN 46383 121423.3	REQUESTED ANALYSIS LEAD SINGLE WIPE DUST (Composite Soil Composite % By Wt. (PAINT CHIP mg/cm²(WIPE AREA	× × ×	× × ×	× × ×	× × × :	SAMFLES RECEIVED BY SAMFLES RECEIVED BY By submitting samples to AAT, the client garees to AAT's terms and conditions.
Atha Lag, LLC Accretified Labor ATORY Brementa LED Boore: Trans and Lan # FROM	\$20 8	<u>e</u>	14:54	14:04 14:39 15:26	21:41 52:41 51:51		SAMFLES SAMFLES moles to AAT. the client ag
tical testing LLS tical FAX: (734) 699-8407 (5227) www.accurate-test.com	8.2 Sampling Date: 13-3-3 Highland Street Hammon SAMPLE END TIME	LE Room Substrate					
ADDODODODODODODODODODODODODODODODODODOD	PROJECT NUMBER 23.2128.2 PROJECT ADDRESS 1301 H	Client SAMPLE ID SS-21A	SS-213 SS-21C SS-22A	55-21 E 55-21 F 55-21 G	55-21 H 55-21 T 55-21 T 55-21 T		SAMPLES RELINQUISHED BY

Certificate of Analysis: Lead In Soil by EPA SW-846 7000B and 3050B Method*

.			
Client :	Amereco Engineering		AAT Project : 985027
	54 Michigan Avenue		Sampling Date: 12/14/2023
	Valparaiso, IN 46383		Date Received : 12/22/2023
Attn :	Zach Heine	Email: labresults@amerecoeng.com	Date Analyzed : 12/26/2023
Phone :	219-531-0531	Fax :	Date Reported : 12/26/2023
Client Pro	oject : 23.2128.2		

Project Location: 1301 HIGHLAND STREET HAMMOND

Lab Sample ID	Client Code	Sample Description	Results Lead μg/g (PPM)	Calculated RL µg/g *
9039245	SS-22B	SOIL 1028	52.7	10.2
9039246	SS-22C	SOIL 959	310	10.7
9039247	SS-22D	SOIL 938	53.6	9.58
9039248	SS-22E	SOIL 1014	452	10.1
9039249	SS-22F	SOIL 926	21.8	10.1
9039250	SS-22G	SOIL 1006	83.9	10.5
9039251	SS-22H	SOIL 951	290	10.4
9039252	SS-221	SOIL 946	151	10.1

Analyst Signature

Bron Marial

*RL= Reporting Limit * For true values assume (3) significant figures. The method and batch QC are acceptable unless otherwise stated. Current EPA/HUD Interim Standard for soil samples are: 400 PPM (parts per million) for play area's, 1200 PPM for building Perimeters and 1000 PPM for California Building Perimeters. AAT internal sop S204. The laboratory operates in accord with ISO 17025 guidelines and holds limited scopes of accreditation under AIHA-LAP and NY State DOH ELAP programs. These results are submitted pursuant to AAT LLC current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. Analytical results relate to the samples as received by the lab. AAT will not assume any liability or responsibility for the manner in which the results are used or interpreted. Reproduction of this document other than in its entirety is not permitted. AAT does not blank correct reported values. Sample data apply only to items analyzed. Samples are stored for 15 days following report date. *= Validated modified method

AIHA LAP- Lab ID #100986, NY State DOH ELAP -Lab ID #11864, State of Ohio- Lab ID # 10042

Bryan Maxwell

Amereco Engineering

To :

30105 Beverly Road Romulus, MI 48174 Ph: 734-629-8161; Fax: 734-629-8431

 AAT Project :
 985027

 Client Project :
 23.2128.2

 Date Reported :
 12/26/2023

54 Michigan Avenue Valparaiso, IN 46383 Attn : Zach Heine Email : labresults@amerecoeng.com Phone : 219-531-0531

Project Location : 1301 HIGHLAND STREET HAMMOND

Sample	Client Code	Analysis Requested	Completed	Analyst
9039245	SS-22B	Lead Soil	12/26/2023	Bryan Maxwell
9039246	SS-22C	Lead Soil	12/26/2023	Bryan Maxwell
9039247	SS-22D	Lead Soil	12/26/2023	Bryan Maxwell
9039248	SS-22E	Lead Soil	12/26/2023	Bryan Maxwell
9039249	SS-22F	Lead Soil	12/26/2023	Bryan Maxwell
9039250	SS-22G	Lead Soil	12/26/2023	Bryan Maxwell
9039251	SS-22H	Lead Soil	12/26/2023	Bryan Maxwell
9039252	SS-221	Lead Soil	12/26/2023	Bryan Maxwell

Reviewed By

Elype B Me

Elyse Bidle Quality Assurance Coordinator

This report is intended for use solely by the individual or entity to which it is addressed. It may contain information that is privileged, confidential and otherwise exempt by law from disclosure. If the reader of this information is not the intended recipient or an employee of its intended recipient, you are herewith notified that any dissemination, distribution or copying of this information is strictly prohibited. If you have received this information in error, please notify AAT immediately. Thank you.

CONTÁCT INFORMATION Zack Heine Phone:(219)-531-0531 Cell: Fax: Fax: Email:labresults@amerecoeng.com	Request Turnaround time (please check one) SAME DAY) 24 Hour) 48 Hour) 3 days (X)	CLIENT COMMENTS	Risk Assessor. Koss Yeater	Samples shipped		SAMPLE CONDI	Υ	> >	CONTAINERS LABELED	LAB REMARKS	1100	1117		1-20987	NUMBER	TIME	(6:00 AM		AM PM
<pre>subMITTING COMPANY Amereco Engineering 54 Michigan Avenue Valparaiso, IN 46383 (22]23.1</pre>	REQUESTED ANALYSIS LEAD SINGLE WIPE DUST () COMPOSITE SOIL (X) PAINT CHIP Mg/cm ² ()	WIPE AREA (e.g. 12 X 12)	×	×	< ×	×	×	×	×	×	×	×	×	X	×	EIVED BY		ZoMá	
	REQUEST	Wis Wit +	[2-H-2]		-	- sint	1	5	7			e.			ri Hotori	SAMFLES RECEIVED BY			
AHALAP, LIC ACCREDITED LABORATORI Emergencia Data record	63	Side	10:28	9:59	H-101	9:20	10:06	9:51	9:HC							24			
	111/20	Substrate	Soil																
FAX: (734) 699-8407 www.accurate-test.com	sampling Date: 12 Alard Street, Hannword SAMPLE END TIME	Room	ł	1	1	(((CHED BY			
30105 Beverly Road Romulus, MI 48174 [734] 699-LABS (5227)	23.2126.2 Samplin 1301 Highland Street sample end TIME	Client SAMPLE ID	SS-22B	SS-22C	32-66U	55-22F	55-226	H22-55	55-22 I							CAMPLES PELINGUISHED RV	The Man	10 -01	
	PROJECT NUMBER PROJECT ADDRESS SAMPLE START TIME	LAB ID	540								125-135 - 12F						2		

By submitting samples to AAT, the client agrees to AAT's terms and conditions.